首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sec translocon of bacterial plasma membranes mediates the linear translocation of secretory proteins as well as the lateral integration of membrane proteins. Integration of many membrane proteins occurs co-translationally via the signal recognition particle (SRP)-dependent targeting of ribosome-associated nascent chains to the Sec translocon. In contrast, translocation of classical secretory proteins across the Sec translocon is a post-translational event requiring no SRP but the motor protein SecA. Secretory proteins were, however, reported to utilize SRP in addition to SecA, if the hydrophobicity of their signal sequences exceeds a certain threshold value. Here we have analyzed transport of this subgroup of secretory proteins across the Sec translocon employing an entirely defined in vitro system. We thus found SecA to be both necessary and sufficient for translocation of secretory proteins with hydrophobic signal sequences, whereas SRP and its receptor improved translocation efficiency. This SRP-mediated boost of translocation is likely due to the early capture of the hydrophobic signal sequence by SRP as revealed by site-specific photo cross-linking of ribosome nascent chain complexes.  相似文献   

2.
Secretory and membrane proteins follow either the signal recognition particle (SRP)-dependent cotranslational translocation pathway or the SRP-independent Sec62/Sec63-dependent posttranslational pathway for their translocation across the endoplasmic reticulum (ER). However, increasing evidence suggests that most proteins are cotranslationally targeted to the ER, suggesting mixed mechanisms. It remains unclear how these two pathways cooperate. Previous studies have shown that Spc3, a signal-anchored protein, requires SRP and Sec62 for its biogenesis. This study investigated the targeting and topogenesis of Spc3 and the step at which SRP and Sec62 act using in vivo and in vitro translocation assays and co-immunoprecipitation. Our data suggest that Spc3 reaches its final topology in two steps: it enters the ER lumen head-first and then inverts its orientation. The first step is partially dependent on SRP, although independent of the Sec62/Sec63 complex. The second step is mediated by the Sec62/Sec63 complex. These data suggest that SRP and Sec62 act on a distinct step in the topogenesis of Spc3.  相似文献   

3.
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an Nin-Cout (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation.  相似文献   

4.
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.  相似文献   

5.
The translocation of secretory polypeptides into the endoplasmic reticulum (ER) occurs at the translocon, a pore-forming structure that orchestrates the transport and maturation of polypeptides at the ER membrane. In yeast, targeting of secretory precursors to the translocon can occur by two distinct pathways that are distinguished by their dependence upon the signal recognition particle (SRP). The SRP-dependent pathway requires SRP and its membrane-bound receptor, whereas the SRP-independent pathway requires a separate receptor complex consisting of Sec62p, Sec63p, Sec71p, Sec72p plus lumenal Kar2p/BiP. Here we demonstrate that Sec63p and Kar2p are also required for the SRP-dependent targeting pathway in vivo. Furthermore, we demonstrate multiple roles for Sec63p, at least one of which is exclusive to the SRP-independent pathway.  相似文献   

6.
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.  相似文献   

7.
Prokaryotes and prokaryote-derived thylakoid membranes of chloroplasts share multiple, evolutionarily conserved pathways for protein export. These include the Sec, signal recognition particle (SRP), and Delta pH/Tat systems. Little is known regarding the thylakoid membrane components involved in these pathways. We isolated a cDNA clone to a novel component of the Delta pH pathway, Tha4, and prepared antibodies against pea Tha4, against maize Hcf106, a protein implicated in Delta pH pathway transport by genetic studies, and against cpSecY, the thylakoid homologue of the bacterial SecY translocon protein. These components were localized to the nonappressed thylakoid membranes. Tha4 and Hcf106 were present in approximately 10-fold excess over active translocation sites. Antibodies to either Tha4 or Hcf106 inhibited translocation of four known Delta pH pathway substrate proteins, but not of Sec pathway or SRP pathway substrates. This suggests that Tha4 and Hcf106 operate either in series or as subunits of a heteromultimeric complex. cpSecY antibodies inhibited translocation of Sec pathway substrates but not of Delta pH or SRP pathway substrates. These studies provide the first biochemical evidence that Tha4 and Hcf106 are specific components of the Delta pH pathway and provide one line of evidence that cpSecY is used specifically by the Sec pathway.  相似文献   

8.
The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.  相似文献   

9.
细菌细胞中,三分之一的蛋白质是在合成后被转运到细胞质外才发挥功能的.其中大多数蛋白是通过Sec途径(即分泌途径secretion pathway)进行跨膜运动的.Sec转运酶是一个多组分的蛋白质复合体,膜蛋白三聚体SecYEG及水解ATP的动力蛋白SecA构成了Sec转运酶的核心.整合膜蛋白SecD,SecF和vajC形成了一个复合体亚单位,可与SecYEG相连并稳定SecA蛋白的膜结合形式.SecB是蛋白质转运中的伴侣分子,可以和很多蛋白质前体结合.SecM是由位于secA基因上游的secM基因编码的,可调节SecA蛋白的合成量,维持细胞在不同环境条件下的正常生长.新生肽链的信号肽被高度保守的SRP特异性识别.伴侣分子SecB通过与细胞膜上的SecA二聚体特异性结合将蛋白质前体引导至Sec转运途径,起始转运过程.结合蛋白质前体的SecA与组成转运通道的SecYEG复合体具有较高的亲和性.SecA经历插入和脱离细胞内膜SecYEG通道的循环,为转运提供所需的能量,每一次循环可推动20多个氨基酸的连续跨膜运动.  相似文献   

10.
The targeting and translocation of proteins is an essentially required and conserved process in all the living organisms. This complex process involves multiple steps and requires a variety of factors before the protein reaches its final destination. The major components of translocation machinery are signal recognition particle (SRP) and secretory (Sec) complex. These are composed of highly conserved components. SRP contains SRP RNA and other polypeptides such as SRP9, SRP14, SRP19 and SRP54. Sec complex is composed of Sec61αβγ, Sec62 and Sec63. In this review using bioinformatics approach we have shown that the P. falciparum genome contains the homologues for all of these and other factors such as SRP receptor, and TRAM (translocation associated membrane protein), which are required for post- and co-translational protein translocation. We have also shown the various steps of translocation in a hypothetical model.  相似文献   

11.
Song W  Raden D  Mandon EC  Gilmore R 《Cell》2000,100(3):333-343
Targeting of ribosome-nascent chain complexes to the translocon in the endoplasmic reticulum is mediated by the concerted action of the signal recognition particle (SRP) and the SRP receptor (SR). Ribosome-stripped microsomes were digested with proteases to sever cytoplasmic domains of SRalpha, SRbeta, TRAM, and the Sec61 complex. We characterized protein translocation intermediates that accumulate when Sec61alpha or SRbeta is inactivated by proteolysis. In the absence of a functional Sec61 complex, dissociation of SRP54 from the signal sequence is blocked. Experiments using SR proteoliposomes confirmed the assembly of a membrane-bound posttargeting intermediate. These results strongly suggest that the Sec61 complex regulates the GTP hydrolysis cycle of the SRP-SR complex at the stage of signal sequence dissociation from SRP54.  相似文献   

12.
The long‐standing paradigm that all peroxisomal proteins are imported post‐translationally into pre‐existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co‐translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N‐terminal transmembrane segment (TMS) of ribosome‐bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3‐containing ribosome?nascent chain complex (RNC) to the translocon, where an ordered multistep pathway integrates the nascent chain into the membrane adjacent to translocon proteins Sec61α and TRAM. This insertion of PEX3 into the ER is physiologically relevant because PEX3 then exits the ER via budding vesicles in an ATP‐dependent process. This study identifies early steps in human peroxisomal biogenesis by demonstrating sequential stages of PMP passage through the mammalian ER.   相似文献   

13.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts.  相似文献   

14.
Prediction of export pathway specificity in prokaryotes is a challenging endeavor due to the similar overall architecture of N-terminal signal peptides for the Sec-, SRP- (signal recognition particle), and Tat (twin arginine translocation)-dependent pathways. Thus, we sought to create a facile experimental strategy for unbiased discovery of pathway specificity conferred by N-terminal signals. Using a limited collection of Escherichia coli strains that allow protein oxidation in the cytoplasm or, conversely, disable protein oxidation in the periplasm, we were able to discriminate the specific mode of export for PhoA (alkaline phosphatase) fusions to signal peptides for all of the major modes of transport across the inner membrane (Sec, SRP, or Tat). Based on these findings, we developed a mini-Tn5 phoA approach to isolate pathway-specific export signals from libraries of random fusions between exported proteins and the phoA gene. Interestingly, we observed that reduced PhoA was exported in a Tat-independent manner when targeted for Tat export in the absence of the essential translocon component TatC. This suggests that initial docking to TatC serves as a key specificity determinant for Tat-specific routing of PhoA, and in its absence, substrates can be rerouted to the Sec pathway, provided they remain compatible with the Sec export mechanism. Finally, the utility of our approach was demonstrated by experimental verification that four secreted proteins from Mycobacterium tuberculosis carrying putative Tat signals are bona fide Tat substrates and thus represent potential Tat-dependent virulence factors in this important human pathogen.  相似文献   

15.
The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP.  相似文献   

16.
The translocation of most proteins across the endoplasmic reticulum or bacterial inner membrane occurs through an aqueous pore that spans the membrane. Substrates that are translocated co-translationally across the membrane are directed to the translocation pore via an interaction between the cytosolic signal recognition particle and its membrane-bound receptor. Together the translocation pore and the receptor are referred to as a translocon. By studying the biogenesis of the translocon a number of alternate targeting and membrane-integration pathways have been discovered that operate independently of the signal recognition particle (SRP) pathway. The novel assembly strategies of the translocon and the ways in which these components interact to ensure the fidelity and unidirectionality of the targeting and translocation process are reviewed here.  相似文献   

17.
The signal recognition particle in S. cerevisiae.   总被引:31,自引:0,他引:31  
B C Hann  P Walter 《Cell》1991,67(1):131-144
We have identified the Saccharomyces cerevisiae homolog of the signal recognition particle (SRP) and characterized its function in vivo. S. cerevisiae SRP is a 16S particle that includes a homolog of the signal sequence-binding protein subunit of SRP (SRP54p) and a small cytoplasmic RNA (scR1). Surprisingly, the genes encoding scR1 and SRP54p are not essential for growth, though SRP-deficient cells grow poorly, suggesting that SRP function can be partially by-passed in vivo. Protein translocation across the ER membrane is impaired in SRP-deficient cells, indicating that yeast SRP, like its mammalian counterpart, functions in this process. Unexpectedly, the degree of the translocation defect varies for different proteins. The ability of some proteins to be efficiently targeted in SRP-deficient cells may explain why previous genetic and biochemical analyses in yeast and bacteria did not reveal components of the SRP-dependent protein targeting pathway.  相似文献   

18.
Besides SecA and SecB, Escherichia coli cells possess a signal recognition particle (SRP) to target exported proteins to the SecY translocon. Using chemical and site-specific cross-linking in vitro, we show that SRP recognizes the first signal anchor sequence of a polytopic membrane protein (MtlA) resulting in cotranslational targeting of MtlA to SecY and phospholipids of the plasma membrane. In contrast, a possible interaction of SRP with the secretory protein pOmpA is prevented by the association of trigger factor with nascent pOmpA. Trigger factor also prevents SecA from binding to the first 125 amino acids of pOmpA when they are still associated with the ribosome. Under no experimental conditions was SecA found to interact with MtlA. Likewise, virtually no binding of trigger factor to ribosome-bound MtlA occurs even in the complete absence of SRP. Collectively, our results indicate that at the stage of nascent polypeptides, polytopic membrane proteins are selected by SRP for co-translational membrane targeting, whereas secretory proteins are directed into the SecA/SecB-mediated post-translational targeting pathway by means of their preferential recognition by trigger factor.  相似文献   

19.
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.  相似文献   

20.
Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号