首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the popular seed cells for regenerative medicine, and there has been a rapid increase in the number of BM-MSC-based clinical trials. However, the safety of these cells should also be closely studied. In this study, spontaneous calcification of BM-MSCs from rats was evaluated in normoxia (20% O(2)) without osteogenic medium after continuous culture for 21 days; obvious mineralized nodules were observed, which were positive for Alizarin Red, collagen-I (Col-I), osteocalcin (OC) and alkaline phosphatase (ALP), and mainly consisted of C, O and Ca elements. Interestingly, hypoxia (2% O(2)) significantly inhibited this spontaneous calcification. In addition, the ALP and calcium content of rBM-MSCs were sharply reduced. Based on RT-PCR results, the expression of osteogenic genes (Cbfa1/Runx2, Col-I, ALP, and OC) was reduced compared to that in normoxia. These results demonstrate a natural and unique characterization of rat BM-MSCs in normoxia after continuous culture and highlight the inhibiting effects of hypoxia. Finally, this study contributes to the information regarding the application of BM-MSCs in the regeneration of various tissues.  相似文献   

2.
在细胞中,过氧化物酶体增长因子活化受体(PPARs)和microRNAs相互制约和调控从而影响相关细胞、组织和器官的功能,在脂肪细胞分化与代谢、炎症、癌症和心血管疾病等生理和病理过程中发挥重要作用.本文首先简要总结了PPARs发挥作用的分子机制;并分别以PPARs家族每一个成员(PPARα、PPARβ和PPARγ)为对象,分析了PPARs调控下的microRNAs表达及功能,探讨了microRNAs调控下的PPARs表达活性变化,并归纳了PPARs与microRNAs之间的调控关系;最后对PPARs相关microRNAs的应用前景进行了简单探讨.研究PPARs与microRNAs间的网络调控关系,可以为PPARs与microRNAs在理论和实践中的深入研究和应用提供参考.  相似文献   

3.

Background

Peroxisome proliferator-activated receptor (PPAR) α, βδ and γ are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested.

Methods

Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification.

Results

mRNA expression of PPARα, PPARβδ, PPARγ was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARα and PPARγ than normal nasal mucosa and these levels were, for PPARγ, further reduced following steroid treatment. PPARγ immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARγ immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment.

Conclusion

The down-regulation of PPARγ, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARγ might be of importance in long standing inflammations.  相似文献   

4.
A series of [4-(2H-1,2,3-benzotriazol-2-yl)phenoxy]alkanoic acids has been synthesized and tested as agonists of Peroxisome Proliferator-Activated Receptor (PPAR) alpha, gamma, and delta. Three compounds displayed 56 to 96% of maximal activity of the reference drug Wy-14643 on PPARalpha, and two of these, i.e., 1 and 5, exhibited also moderate activity on either PPARgamma or delta with efficacy equal to 50% and 46% of that of rosiglitazone and GW 501516, respectively. Thus, compounds 1 and 5 represent interesting starting point for preparing novel agents for the treatment of dyslipidemia or of dyslipidemic type-2 diabetes.  相似文献   

5.
We investigated the spatiotemporal distributions of the different peroxisome proliferator-activated receptor (PPAR) isotypes (alpha, beta, and gamma) during development (Week 7 to Week 22 of gestation) of the human fetal digestive tract by immunohistochemistry using specific polyclonal antibodies. The PPAR subtypes, including PPARgamma, are expressed as early as 7 weeks of development in cell types of endodermal and mesodermal origin. The presence of PPARgamma was also found by Western blotting and nuclease-S1 protection assay, confirming that this subtype is not adipocyte-specific. PPARalpha, PPARbeta, and PPARgamma exhibit different patterns of expression during morphogenesis of the digestive tract. Whatever the stage and the gut region (except the stomach) examined, PPARgamma is expressed at a high level, suggesting some fundamental role for this receptor in development and/or physiology of the human digestive tract.  相似文献   

6.
Human mesenchymal stromal or stem cells (hMSCs) are being investigated for cell therapy in a wide range of diseases. MSCs are a potent source of trophic factors and actively remodel their immediate microenvironment through the secretion of bioactive factors in response to external stimuli such as oxygen tension. In this study, we examined the hypothesis that hypoxia influences hMSC properties in part through the regulation of extracellular milieu characterized by the extracellular matrix (ECM) matrices and the associated fibroblast growth factor‐2 (FGF‐2). The decellularized ECM matrices derived from hMSC culture under both hypoxic (e.g., 2% O2) and the standard culture (e.g., 20% O2) conditions have different binding capacities to the cell‐secreted and exogenenous FGF‐2. The reduced hMSC proliferation in the presence of FGF‐2 inhibitor and the differential capacity of the decellularized ECM matrices in regulating hMSC osteogeneic and adipogenic differentiation suggest an important role of the endogenous FGF‐2 in sustaining hMSC proliferation and regulating hMSC fate. Additionally, the combination of the ECM adhesion and hypoxic culture preserved hMSC viability under serum withdrawal. Together, the results suggest the synergistic effect of hypoxia and the ECM matrices in sustaining hMSC ex vivo expansion and preserving their multi‐potentiality and viability under nutrient depletion. The results have important implication in optimizing hMSC expansion and delivery strategies to obtain hMSCs in sufficient quantity with required potency and to enhance survival and function upon transplantation. J. Cell. Biochem. 114: 716–727, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Regulation of p85a phosphatidylinositol-3-kinase (p85alphaPI-3K) expression by peroxisome proliferator-activated receptor (PPAR) activators was studied in human skeletal muscle cells. Activation of PPARgamma or PPARbeta did not modify the expression of p85alphaPI-3K. In contrast, activation of PPARalpha increased p85alphaPI-3K mRNA. This effect was potentiated by 9-cis-retinoic acid, an activator of RXR. Up-regulation of p85alphaPI-3K gene expression resulted in a rise in p85alphaPI-3K protein level and in an increase in insulin-induced PI3-kinase activity. According to the role of p85alphaPI-3K in insulin action, these results suggest that drugs with dual action on both PPARgamma and PPARalpha can be of interest for the treatment of insulin resistance.  相似文献   

8.
9.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Wedelolactone is an herbal medicine that is used to treat septic shock, hepatitis and venom poisoning. Although in differentiated and cancer cells, wedelolactone has been identified as anti‐inflammatory, growth inhibitory, and pro‐apoptotic, the effects of wedelolactone on stem cell differentiation remain largely unknown. Here, we report that wedelolactone inhibits the adipogenic differentiation of human adipose tissue‐derived mesenchymal stem cells (hAMSCs). Wedelolactone reduced the formation of lipid droplets and the expression of adipogenesis‐related proteins, such as CCAAT enhancer‐binding protein‐α (C/EBP‐α), peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), lipoprotein lipase (LPL), and adipocyte fatty acid‐binding protein aP2 (aP2). Wedelolactone mediated this process by sustaining ERK activity. In addition, inhibition of ERK activity with PD98059 resulted in reversion of the wedelolactone‐mediated inhibition of adipogenic differentiation. Taken together, these results indicate that wedelolactone inhibits adipogenic differentiation through ERK pathway and suggest a novel inhibitory effect of wedelolactone on adipogenic differentiation in hAMSCs. J. Cell. Biochem. 113: 3436–3445, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
The term mesenchymal stem cell (MSCs) was adopted in the 1990s to describe a population of bone-marrow-derived cells that demonstrated the capacity for tri-lineage differentiation at a clonal level. Research conducted during the ensuing decades has demonstrated that MSCs fulfill many functions in addition to connective tissue progenitors including contributing to the HSC niche and regulating the function of immune effector cells of both the innate and adaptive immune system. Despite these advances, fundamental aspects of MSC biology remain indeterminate. For example, the embryonic origin of MSCs and their niche in vivo remains a highly debated topic. More importantly, the mechanisms that regulate self-renewal and lineage specification have also been largely unexplored. The later is significant in that MSC population's exhibit considerable donor-to-donor and intra-population heterogeneity but knowledge regarding how different functional attributes of MSCs are specified at the population level is unknown. This poses significant obstacles in research and in efforts to develop clinical manufacturing protocols that reproducibly generate functionally equivalent MSC populations. Herein, I discuss data demonstrating that MSC populations are intrinsically heterogeneous, elaborate on the molecular basis for this heterogeneity, and discuss how heterogeneity impacts clinical manufacturing and the therapeutic potency of MSCs.  相似文献   

14.
15.
Human adipose-derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose-derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose-derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre- and post-osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The expression of osteogenic proteins was detected using an enzyme-linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre- and post-osteogenic induction, among which four miRNAs (miR-17, miR-20a, miR-20b, and miR-106a) were up-regulated and four miRNAs (miR-31, miR-125a-5p, miR-125b, and miR-193a) were down-regulated. qRT-PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self-renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering.  相似文献   

16.
17.
Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self‐renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia‐induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self‐renewal of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) and placental chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) and to investigate the regulatory mechanisms of self‐renewal in each MSC type during hypoxia. The expression of self‐renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP‐MSCs but were markedly downregulated in BM‐MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP‐MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof‐shaped autophagosome was detected more rapidly in CP‐MSCs than in BM‐MSCs under hypoxia. Hypoxia induced the expression of SCF in CP‐MSCs and increased SCF/c‐kit pathway promotes the self‐renewal activities of CP‐MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP‐MSCs than in BM‐MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c‐kit in the self‐renewal and autophagy‐regulated mechanisms that promote of MSC survival. J. Cell. Biochem. 114: 79–88, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Peroxisome proliferator-activated receptors (PPARs) play very important roles in various biological phenomena such as regulation of lipid metabolism, homeostasis, cell differentiation and proliferation, in a variety of organs and tissues. However, their functions in the development of the digestive organs have not been studied yet, although it has been supposed that they are involved in the tumor development and regression of digestive organs. To provide fundamental data to analyze functions of PPARs in the developing digestive organs in the chicken embryos, we performed thorough analysis of expression of PPARalpha, beta (delta) and gamma in the esophagus, proventriculus (glandular stomach), gizzard (muscular stomach), small and large intestines from early developmental stages to post hatch stages. The results showed that each PPAR is expressed in spatio-temporally regulated manner. In general, PPARbeta is widely expressed among digestive organs whereas PPARalpha and gamma showed restricted expression. In the intestine, all PPARs are expressed after hatch, indicating that they play important roles in the physiology of the adult intestine.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号