首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloned cDNA encoding a putative member of GABA receptor ϱ-subunit class was isolated from rat-retina-mRNA-derived libraries. The cDNA encodes a signal peptide of 21 amino acids followed by the mature ϱ3 subunit sequence of 443 amino acids. The proposed amino acid sequence exhibits 63 and 61% homology to the previously-reported human ϱ1 and rat ϱ2 sequences, respectively. Northern blot analysis demonstrated the expression of mRNA for ϱ3 subunit in retina.  相似文献   

2.
Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its tight interaction with GlyR β, gephyrin only loosely interacts with GABA(A)R α2, whereas it has an intermediate affinity for the GABA(A)R α1 and α3 subunits. Despite the wide variation in affinities and the low overall sequence homology among the identified receptor subunits, competition assays confirmed the receptor-gephyrin interaction to be a mutually exclusive process. Selected gephyrin point mutants that critically weaken complex formation with GlyR β also abolished the GABA(A)R α1 and α3 interactions. Additionally, we identified a common binding motif with two conserved aromatic residues that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key insights regarding similarities and differences in the complex formation between gephyrin and GABA(A)Rs compared with GlyRs and, hence, the accumulation of these receptors at postsynaptic sites.  相似文献   

3.
A peptide corresponding to residues 26–41 of α-bungarotoxin, and closed by a disulfide bond between two cysteine residues at the amino and C terminal ends of the peptide, was synthesized and the monomeric form was purified. The peptide, which represents the exposed part of the long central loop of the toxin molecule, was examined for binding to acetylcholine receptor. The peptide was shown by radiometric titrations to bind radiolabeled receptor, and radiolabeled peptide was bound by receptor. The specificity of the binding was confirmed by inhibition with the parent toxin. A synthetic analog of the peptide in which Trp-28 was replaced by glycine had very little (10%) of the original activity. Succinylation of the amino groups of the peptide resulted in virtually complete (98%) loss of the binding activity. These results indicate that a shortened loop peptide corresponding to the region 26–41 of α-bungarotoxin exhibits binding activities mimicking those of the parent molecule. In this region, Trp-28, and one or both of Lys-26 and Lys-38, are essential contact residues in the binding to receptor.  相似文献   

4.
Collybistin promotes submembrane clustering of gephyrin and is essential for the postsynaptic localization of gephyrin and γ-aminobutyric acid type A (GABA(A)) receptors at GABAergic synapses in hippocampus and amygdala. Four collybistin isoforms are expressed in brain neurons; CB2 and CB3 differ in the C terminus and occur with and without the Src homology 3 (SH3) domain. We have found that in transfected hippocampal neurons, all collybistin isoforms (CB2(SH3+), CB2(SH3-), CB3(SH3+), and CB3(SH3-)) target to and concentrate at GABAergic postsynapses. Moreover, in non-transfected neurons, collybistin concentrates at GABAergic synapses. Hippocampal neurons co-transfected with CB2(SH3-) and gephyrin developed very large postsynaptic gephyrin and GABA(A) receptor clusters (superclusters). This effect was accompanied by a significant increase in the amplitude of miniature inhibitory postsynaptic currents. Co-transfection with CB2(SH3+) and gephyrin induced the formation of many (supernumerary) non-synaptic clusters. Transfection with gephyrin alone did not affect cluster number or size, but gephyrin potentiated the clustering effect of CB2(SH3-) or CB2(SH3+). Co-transfection with CB2(SH3-) or CB2(SH3+) and gephyrin did not affect the density of presynaptic GABAergic terminals contacting the transfected cells, indicating that collybistin is not synaptogenic. Nevertheless, the synaptic superclusters induced by CB2(SH3-) and gephyrin were accompanied by enlarged presynaptic GABAergic terminals. The enhanced clustering of gephyrin and GABA(A) receptors induced by collybistin isoforms was not accompanied by enhanced clustering of neuroligin 2. Moreover, during the development of GABAergic synapses, the clustering of gephyrin and GABA(A) receptors preceded the clustering of neuroligin 2. We propose a model in which the SH3- isoforms play a major role in the postsynaptic accumulation of GABA(A) receptors and in GABAergic synaptic strength.  相似文献   

5.
6.
Nipecotic acid is one of the most potent competitive inhibitors and alternative substrates for the high-affinity -aminobutyric acid transport system in neurons, but the structural basis of this potency is unclear. Because -aminobutyrate is a highly flexible molecule in solution, it would be expected to lose rotational entropy upon binding to the transport system, a change which does not favor binding. Nipecotic acid, in contrast, is a much less flexible molecule, and one would expect the loss of conformational entropy upon binding to be smaller thus favoring the binding of nipecotic acid over -aminobutyric acid. To investigate this possibility, the thermodynamic parameters, G°, H°, and S°, were determined for the binding of -aminobutyrate and nipecotic acid to the high affinity GABA transport system in synaptosomes. In keeping with expectations, the apparent entropy change for nipecotic acid binding (112±13 J·K–1) was more favorable than the apparent entropy change for -aminobutyric acid binding (61.3±6.6 J·K–1). The results suggest that restricted conformation per se is an important contributory factor to the affinity of nipecotic acid for the high-affinity transport system for -aminobutyric acid.This work was conducted when both authors were at the Department of Chemistry, University of Maryland, College Park.Special issue dedicated to Dr. Elling Kvamme.  相似文献   

7.
8.
Hu J  Fei J  Reutter W  Fan H 《Glycobiology》2011,21(3):329-339
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.  相似文献   

9.
Normal and pathological stressors engage the AMP-activated protein kinase (AMPK) signalling axis to protect the cell from energetic pressures. Sex steroid hormones also play a critical role in energy metabolism and significantly modify pathological progression of cardiac disease, diabetes/obesity and cancer. AMPK is targeted by 17β-oestradiol (E2), the main circulating oestrogen, but the mechanism by which E2 activates AMPK is currently unknown. Using an oestrogen receptor α/β (ERα/β) positive (T47D) breast cancer cell line, we validated E2-dependent activation of AMPK that was mediated through ERα (not ERβ) by using three experimental strategies. A series of co-immunoprecipitation experiments showed that both ERs associated with AMPK in cancer and striated (skeletal and cardiac) muscle cells. We further demonstrated direct binding of ERs to the α-catalytic subunit of AMPK within the βγ-subunit-binding domain. Finally, both ERs interacted with the upstream liver kinase B 1 (LKB1) kinase complex, which is required for E2-dependent activation of AMPK. We conclude that E2 activates AMPK through ERα by direct interaction with the βγ-binding domain of AMPKα.  相似文献   

10.
Summary. The purpose of this study was to determine whether the γ-aminobutyric acid (GABA) affects the rate of brain protein synthesis in male rats. Two experiments were done on five or three groups of young rats (5 wk) given the diets containing 20% casein administrated 0 mg, 25 mg, 50 mg, 100 mg or 200 mg/100 g body weight GABA dissolved in saline by oral gavage for 1 day (d) (Experiment 1), and given the diets contained 0%, 0.25% or 0.5% GABA added to the 20% casein diet (Experiment 2) for 10 d. The plasma concentration of growth hormone (GH) was the highest in rats administrated 50 mg and 100 mg/100 g body weight GABA. The concentration of serum GABA increased significantly with the supplementation groups. The fractional (Ks) rates of protein synthesis in brain regions, liver and gastrocnemius muscle increased significantly with the 20% casein + 0.25% GABA diet and still more 20% casein + 0.5% GABA compared with the 20% casein diet. In brain regions, liver and gastrocnemius muscle, the RNA activity [g protein synthesized/(g RNA·d)] significantly correlated with the fractional rate of protein synthesis. The RNA concentration (mg RNA/g protein) was not related to the fractional rate of protein synthesis in any organ. Our results suggest that the treatment of GABA to young male rats are likely to increase the concentrations of plasma GH and the rate of protein synthesis in the brain, and that RNA activity is at least partly related to the fractional rate of brain protein synthesis.  相似文献   

11.
We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of the distal methyl group in the synthesized analogues.  相似文献   

12.
Summary The amylase-protein amylase inhibitor system offers a unique model of specific and reversible protein-protein interaction. The monomeric and dimeric inhibitors, exhibiting closely related properties and interacting with the same amylase, also provide a convenient test to compare effects of monomer-monomer and monomerdimer interactions between enzyme and inhibitor proteins.TmL amylase, Tenebrio molitor L. larval -amylase; CP amylase, chicken pancreatic -amylase; 0.19, -amylase protein inhibitor from wheat kernel with gel electrophoretic mobility 0.19; 0.28, -amylase protein inhibitor from wheat kernel with gel electrophoretic mobility 0.28.  相似文献   

13.
The GABA type A receptor (GABA(A)R) is a member of the pentameric ligand gated ion channel (pLGIC) family that mediates ionotropic neurotransmission. Residues in the intracellular loop domain (ILD) have recently been shown to define part of the ion permeation pathway in several closely related members of the pentameric ligand gated ion channel family. In this study, we investigated the role the ILD of the GABA(A)R α1 subunit plays in channel function. Deletion of the α1 ILD resulted in a significant increase in GABA EC(50) and maximal current amplitude, suggesting that the ILD must be intact for proper receptor function. To test this hypothesis, we conducted a mutagenic screen of all amino acids harboring ionizable side chains within this domain to investigate the contribution of individual charged residues to ion permeation. Using macroscopic and single channel voltage-clamp recording techniques, we found that mutations within a subdomain of the α1 ILD near M3 altered GABA apparent affinity; interestingly, α1(K312E) exhibited reduced partial agonist efficacy. We introduced point mutations near M4, including α1(K383E) and α1(K384E), that enhanced receptor desensitization. Mutation of 5 charged residues within a 39-residue span contiguous with M4 reduced relative anion permeability of the channel and may represent a weak intracellular selectivity filter. Within this subdomain, the α1(K378E) mutation induced a significant reduction in single channel conductance, consistent with our hypothesis that the GABA(A)R α1 ILD contributes directly to the permeation pathway.  相似文献   

14.
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.  相似文献   

15.
The regulation of glutamic decarboxylase (GAD) activity is undoubtedly the key to the control of the steady-state concentrations of 4-aminobutyric acid (GABA) in the central nervous system. Those factors that might influence GAD activity are reviewed. They include repression and induction of GAD synthesis; the interconversion of the holo- and apo-form of GAD; the availability of substrate and cofactor; the competitive inhibition of GAD by endogenous substances, including GABA; and the involvement of calcium ions in whole-cell preparations. Where possible mechanisms of action are described, and the likelihood that each is of physiological importance is discussed. Experiments are suggested that would help clarify (1) the role of GABA in GAD repression; (2) the possible phosphorylation of GAD; and (3) the existence of multiple forms of the enzyme. In addition, a kinetic mechanism is proposed to explain the possible regulation of GAD by the interconversion of the holo- and apo-forms of the enzyme. It is concluded that the overriding factors responsible for GAD regulation are not yet understood. However, a possible mechanism relying on the direct feedback action of GABA on GAD activity has many attractive features.  相似文献   

16.
In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called ‘stalk’. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.  相似文献   

17.
The influence of phosphatidylserine (PS) on the isoniazid-induced convulsions has been studied in mice. Sonicated dispersions of this phospholipid given intravenously do not show anticonvulsant activity but they do so when -aminobutyric acid (GABA) is simultaneously injected. GABA alone is inactive. The synergism between PS and GABA is influenced by the structure of the phospholipid liposomes. In contrast to multilamellar vesicles, oligolamellar vesicles are active. Under these conditions the effect shows head group specificity, in that the neutral phosphatidylcholine (PC) or the acidic phosphatidylinositol (PI) are inactive, either in the presence or in the absence of GABA. Lysophosphatidylserine (lysoPS), the deacylated PS derivative, shows increased efficacy as an isoniazid antagonist in the presence of GABA, and has anticonvulsant activity also in the absence of GABA. Other lysophospholipids are inactive. It is suggested that PS, after its metabolic conversion to lysoPS, enhances the anticonvulsant effect of GABA.  相似文献   

18.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M74721.  相似文献   

19.
20.
Propanidid is an intravenous anesthetic with transient action and rapid recovery features, but it is clinically unacceptable due to its side effects. AZD-3043, an analog of propanidid with the methoxy group substituted by the ethoxy group, has become the focus of recent development efforts. Although propanidid and AZD-3043 are known to act by potentiating the γ-aminobutyric acid type A receptors (GABAARs), their action sites and binding modes in the recognition of target proteins still remain unclear. In this study, molecular docking and ONIOM calculations were performed to explore the possible binding sites and binding modes of propanidid and AZD-3043 with the GABAAR. The predicted active region located in the transmembrane domain (TMD) of GABAAR was identified as the most favorable binding site for propanidid and AZD-3043, with the highest docking score (?39.69 and ?39.44 kcal/mol, respectively) and the largest binding energy (?88.478 and ?78.439 kcal/mol, respectively). The important role of amino acids Asp245, Asp424, Asp425, Arg428, Phe307, and Ser308 in determining the binding modes of propanidid or AZD-3043 with GABAAR was revealed. The detailed molecular interactions between propanidid and AZD-3043 and the GABAAR were revealed for the first time. This could improve our understanding of the action mechanism of general anesthetics and will be helpful for the design of more potential lead-like molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号