首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve-secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin-association of p120ctn in cell extracts. Whereas ectopic expression of wild-type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant-negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve- and agrin-induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin-induced myopodial assembly and suggest that myopodia increase muscle-nerve contacts and muscle's access to neural agrin to promote NMJ formation.  相似文献   

2.
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve‐secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin‐association of p120ctn in cell extracts. Whereas ectopic expression of wild‐type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant‐negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve‐ and agrin‐induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin‐induced myopodial assembly and suggest that myopodia increase muscle–nerve contacts and muscle's access to neural agrin to promote NMJ formation. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

3.
During vertebrate neuromuscular junction (NMJ) assembly, motor axons and their muscle targets exchange short-range signals that regulate the subsequent steps of presynaptic and postsynaptic specialization. We report here that this interaction is in part mediated by axonal filopodia extended preferentially by cultured Xenopus spinal neurons toward their muscle targets. Immunoblotting and labeling experiments showed that basic fibroblast growth factor (bFGF) was expressed by muscle and associated with the cell surface, and treatment of cultured spinal neurons with recombinant bFGF nearly doubled the normal density of filopodia in neurites. This effect of bFGF was abolished by SU5402, a selective inhibitor of FGF-receptor 1 (FGFR1), and forced expression of wild-type or dominant-negative FGFR1 in neurons enhanced or suppressed the assembly of filopodia, respectively. Significantly, in nerve-muscle cocultures, knocking down bFGF in muscle decreased both the asymmetric extension of filopodia by axons toward muscle and the assembly of NMJs. In addition, neurons expressing dominant-negative FGFR1 less effectively triggered the aggregation of muscle acetylcholine receptors at innervation sites than did control neurons. These results suggest that bFGF activation of neuronal FGFR1 generates filopodial processes in neurons that promote nerve-muscle interaction and facilitate NMJ establishment.  相似文献   

4.
PP Li  JJ Zhou  M Meng  R Madhavan  HB Peng 《PloS one》2012,7(9):e44759

Background

The assembly of the vertebrate neuromuscular junction (NMJ) is initiated when nerve and muscle first contact each other by filopodial processes which are thought to enable close interactions between the synaptic partners and facilitate synaptogenesis. We recently reported that embryonic Xenopus spinal neurons preferentially extended filopodia towards cocultured muscle cells and that basic fibroblast growth factor (bFGF) produced by muscle activated neuronal FGF receptor 1 (FGFR1) to induce filopodia and favor synaptogenesis. Intriguingly, in an earlier study we found that neurotrophins (NTs), a different set of target-derived factors that act through Trk receptor tyrosine kinases, promoted neuronal growth but hindered presynaptic differentiation and NMJ formation. Thus, here we investigated how bFGF- and NT-signals in neurons jointly elicit presynaptic changes during the earliest stages of NMJ development.

Methodology/Principal Findings

Whereas forced expression of wild-type TrkB in neurons reduced filopodial extension and triggered axonal outgrowth, expression of a mutant TrkB lacking the intracellular kinase domain enhanced filopodial growth and slowed axonal advance. Neurons overexpressing wild-type FGFR1 also displayed more filopodia than control neurons, in accord with our previous findings, and, notably, this elevation in filopodial density was suppressed when neurons were chronically treated from the beginning of the culture period with BDNF, the NT that specifically activates TrkB. Conversely, inhibition by BDNF of NMJ formation in nerve-muscle cocultures was partly reversed by the overexpression of bFGF in muscle.

Conclusions

Our results suggest that the balance between neuronal FGFR1- and TrkB-dependent filopodial assembly and axonal outgrowth regulates the establishment of incipient NMJs.  相似文献   

5.
During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules.  相似文献   

6.
p120 catenin (p120ctn), an armadillo protein and component of the cadherin adhesion complex, has been found recently to induce a dendritic morphology by regulating Rho family GTPases. We have identified specific serines within the Arm repeat domain that, when mutated to alanine, promote p120ctn association with interphase microtubules, leading to microtubule reorganization and stabilization. The mutant p120ctn also localized to the mitotic spindle and centrosomes. In contrast to wild-type p120ctn, the microtubule-associated p120ctn mutant did not activate Rac1 and did not induce a dendritic morphology. In addition, we show that a basic motif within the p120ctn Arm repeat domain known to be required for the inhibition of RhoA is also required for binding to microtubules. We therefore propose that binding of p120ctn to microtubules is inversely related to its ability to regulate Rho GTPases.  相似文献   

7.
Synaptic partner cells recognize one another by utilizing a variety of molecular cues. Prior to neuromuscular synapse formation, Drosophila embryonic muscles extend dynamic actin-based filopodia called "myopodia." In wild-type animals, myopodia are initially extended randomly from the muscle surface but become gradually restricted to the site of motoneuron innervation, a spatial redistribution we call "clustering." Previous experiments with prospero mutant embryos demonstrated that myopodia clustering does not occur in the absence of motoneuron outgrowth into the muscle field. However, whether myopodia clustering is due to a general signal from passing axons or is a result of the specific interactions between synaptic partners remained to be investigated. Here, we have examined the relationship of myopodia to the specific events of synaptic target recognition, the stable adhesion of synaptic partners. We manipulated the embryonic expression of alphaPS2 integrin and Toll, molecules known to affect synaptic development, to specifically alter synaptic targeting on identified muscles. Then, we used a vital single-cell labeling approach to visualize the behavior of myopodia in these animals. We demonstrate a strong positive correlation between myopodia activity and synaptic target recognition. The frequency of myopodia clustering is lowered in cases where synaptic targeting is disrupted. Myopodia clustering seems to result from the adherence of a subset of myopodia to the innervating growth cone while the rest are eliminated. The data suggest that postsynaptic cells play a dynamic role in the process of synaptic target recognition.  相似文献   

8.
Udo H  Jin I  Kim JH  Li HL  Youn T  Hawkins RD  Kandel ER  Bailey CH 《Neuron》2005,45(6):887-901
Application of Clostridium difficile toxin B, an inhibitor of the Rho family of GTPases, at the Aplysia sensory to motor neuron synapse blocks long-term facilitation and the associated growth of new sensory neuron varicosities induced by repeated pulses of serotonin (5-HT). We have isolated cDNAs encoding Aplysia Rho, Rac, and Cdc42 and found that Rho and Rac had no effect but that overexpression in sensory neurons of a dominant-negative mutant of ApCdc42 or the CRIB domains of its downstream effectors PAK and N-WASP selectively reduces the long-term changes in synaptic strength and structure. FRET analysis indicates that 5-HT activates ApCdc42 in a subset of varicosities contacting the postsynaptic motor neuron and that this activation is dependent on the PI3K and PLC signaling pathways. The 5-HT-induced activation of ApCdc42 initiates reorganization of the presynaptic actin network leading to the outgrowth of filopodia, some of which are morphological precursors for the learning-related formation of new sensory neuron varicosities.  相似文献   

9.
Rho GTPases are important regulators of cellular behavior through their effects on processes such as cytoskeletal organization. Here we show interactions between Drosophila Rho1 and the adherens junction components alpha-catenin and p120(ctn). We find that while Rho1 protein is present throughout the cell, it accumulates apically, particularly at sites of cadherin-based adherens junctions. Cadherin and catenin localization is disrupted in Rho1 mutants, implicating Rho1 in their regulation. p120(ctn) has recently been suggested to inhibit Rho activity through an unknown mechanism. We find that Rho1 accumulates in response to lowered p120(ctn) activity. Significantly, we find that Rho1 binds directly to alpha-catenin and p120(ctn) in vitro, and these interactions map to distinct surface-exposed regions of the protein not previously assigned functions. In addition, we find that both alpha-catenin and p120(ctn) co-immunoprecipitate with Rho1-containing complexes from embryo lysates. Our observations suggest that alpha-catenin and p120(ctn) are key players in a mechanism of recruiting Rho1 to its sites of action.  相似文献   

10.
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.  相似文献   

11.
As synapses form and mature the synaptic partners produce organizing molecules that regulate each other’s differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ), these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.  相似文献   

12.
p120 catenin regulates the actin cytoskeleton via Rho family GTPases   总被引:19,自引:0,他引:19  
Cadherins are calcium-dependent adhesion molecules responsible for the establishment of tight cell-cell contacts. p120 catenin (p120ctn) binds to the cytoplasmic domain of cadherins in the juxtamembrane region, which has been implicated in regulating cell motility. It has previously been shown that overexpression of p120ctn induces a dendritic morphology in fibroblasts (Reynolds, A.B. , J. Daniel, Y. Mo, J. Wu, and Z. Zhang. 1996. Exp. Cell Res. 225:328-337.). We show here that this phenotype is suppressed by coexpression of cadherin constructs that contain the juxtamembrane region, but not by constructs lacking this domain. Overexpression of p120ctn disrupts stress fibers and focal adhesions and results in a decrease in RhoA activity. The p120ctn-induced phenotype is blocked by dominant negative Cdc42 and Rac1 and by constitutively active Rho-kinase, but is enhanced by dominant negative RhoA. p120ctn overexpression increased the activity of endogenous Cdc42 and Rac1. Exploring how p120ctn may regulate Rho family GTPases, we find that p120ctn binds the Rho family exchange factor Vav2. The behavior of p120ctn suggests that it is a vehicle for cross-talk between cell-cell junctions and the motile machinery of cells. We propose a model in which p120ctn can shuttle between a cadherin-bound state and a cytoplasmic pool in which it can interact with regulators of Rho family GTPases. Factors that perturb cell-cell junctions, such that the cytoplasmic pool of p120ctn is increased, are predicted to decrease RhoA activity but to elevate active Rac1 and Cdc42, thereby promoting cell migration.  相似文献   

13.
Agrin induces synaptic differentiation at the skeletal neuromuscular junction (NMJ); both pre- and postsynaptic differentiation are drastically impaired in its absence. Multiple alternatively spliced forms of agrin that differ in binding characteristics and bioactivity are synthesized by nerve and muscle cells. We used surgical chimeras, isoform-specific mutant mice, and nerve-muscle cocultures to determine the origins and nature of the agrin required for synaptogenesis. We show that agrin containing Z exons (Z+) is a critical nerve-derived inducer of postsynaptic differentiation, whereas neural isoforms containing a heparin binding site (Y+) and all muscle-derived isoforms are dispensable for major steps in synaptogenesis. Our results also suggest that the requirement of agrin for presynaptic differentiation is mediated indirectly by its ability to promote postsynaptic production or localization of appropriate retrograde signals.  相似文献   

14.
Regulation of rho GTPases by crosstalk and neuronal activity in vivo   总被引:19,自引:0,他引:19  
Li Z  Aizenman CD  Cline HT 《Neuron》2002,33(5):741-750
Proper development of neurons depends on synaptic activity, but the mechanisms of activity-dependent neuronal growth are not well understood. The small GTPases, RhoA, Rac, and Cdc42, regulate neuronal morphogenesis by controlling the assembly and stability of the actin cytoskeleton. We report an in situ method to determine endogenous Rho GTPase activity in intact Xenopus brain. We use this method to provide evidence for crosstalk between Rho GTPases in optic tectal cells. Moreover, crosstalk between the Rho GTPases appears to affect dendritic arbor development in vivo. Finally, we demonstrate that optic nerve stimulation regulates Rho GTPase activity in a glutamate receptor-dependent manner. These data suggest a link between glutamate receptor function, Rho GTPase activity, and dendritic arbor growth in the intact animal.  相似文献   

15.
Peng  H. B.  Xie  H.  Dai  Z. 《Brain Cell Biology》1997,26(10):637-650
During the development of the neuromuscular junction (NMJ), motoneurons grow to the muscle cell and the nerve–muscle contact triggers the development of both presynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of acetylcholine receptors (AChRs). Previous studies have shown that the activation of tyrosine kinases and the local assembly of an actin-based cytoskeletal specialization are involved in the development of both types of specializations. To understand the link between tyrosine phosphorylation and the assembly of the cytoskeleton, we examined the localization of cortactin in relationship to synaptic development. Cortactin is a 80/85 kD F-actin binding protein and is a substrate for tyrosine kinases. It contains a proline-rich motif and an SH3 domain and is localized at sites of active F-actin assembly. Using a monoclonal antibody against cortactin, its localization at developing NMJs in culture was observed. To understand the spatial and temporal relationship between cortactin and developing synaptic structures, cultured muscle cells and spinal neurons from Xenopus embryos were treated with beads coated with heparin-binding growth-associated molecule to induce the formation of AChR clusters and SV clusters and the localization of cortactin was followed by immunofluorescence. In untreated muscle cells, cortactin is often co-localized with spontaneously formed AChR clusters. After cells were treated with beads, cortactin became localized at bead-induced AChR clusters at their earliest appearance (1 h after the addition of beads). This association was most reliably detected at the early stage of the clustering process. On the presynaptic side, cortactin localization could be detected as early as 10 min after the bead-neurite contact was established. Cortactin-enriched contacts later showed concentration of F-actin (at 1 h) and clusters of SVs (at 24 h). These data suggest that cortactin mediates the local assembly of the cytoskeletal specialization triggered by the synaptogenic signal on both nerve and muscle.  相似文献   

16.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

17.
Synapses form after growing axons recognize their appropriate targets. The subsequent assembly of aligned pre and postsynaptic specializations is critical for synaptic function. This highly precise apposition of presynaptic elements (i.e. active zones) to postsynaptic specializations (i.e. neurotransmitter receptor clusters) strongly suggests that communication between the axon and target is required for synaptic differentiation. What trans‐synaptic factors drive such differentiation at vertebrate synapses? First insights into the answers to this question came from studies at the neuromuscular junction (NMJ), where axon‐derived agrin and muscle‐derived laminin β2 induce post and presynaptic differentiation, respectively. Recent work has suggested that axon‐ and target‐derived factors similarly drive synaptic differentiation at central synapses. Specifically, WNT‐7a, neuroligin, synaptic cell adhesion molecule (SynCAM) and fibroblast growth factor‐22 (FGF‐22) have all been identified as target‐derived presynaptic organizers, whereas axon‐derived neuronal activity regulated pentraxin (Narp), ephrinB and neurexin reciprocally co‐ordinate postsynaptic differentiation. In addition to these axon‐ and target‐derived inducers of synaptic differentiation, factors released from glial cells have also been implicated in regulating synapse assembly. Together, these recent findings have profoundly advanced our understanding of how precise appositions are established during vertebrate nervous system development.  相似文献   

18.
During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs.  相似文献   

19.
Recent results suggest that long-lasting potentiation at hippocampal synapses involves the rapid formation of clusters or puncta of presynaptic as well as postsynaptic proteins, both of which are blocked by antagonists of NMDA receptors and an inhibitor of actin polymerization. We have investigated whether the increase in puncta involves retrograde signaling through the NO-cGMP-cGK pathway and also examined the possible roles of two classes of molecules that regulate the actin cytoskeleton: Ena/VASP proteins and Rho GTPases. Our results suggest that NO, cGMP, cGK, actin, and Rho GTPases including RhoA play important roles in the potentiation and act directly in both the presynaptic and postsynaptic neurons, where they contribute to the increase in puncta of synaptic proteins. cGK phosphorylates synaptic VASP during the potentiation, whereas Rho GTPases act both in parallel and upstream of cGMP, in part by maintaining the synaptic localization of soluble guanylyl cyclase.  相似文献   

20.
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号