共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Masayuki Fukui Ki Sung Kang Kazushi Okada Bao Ting Zhu 《Journal of cellular biochemistry》2013,114(1):192-203
In a recent study, we showed that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two common omega‐3 fatty acids, can cause ROS accumulation and subsequently induce caspase‐8‐dependent apoptosis in human breast cancer cells (Kang et al. [2010], PLoS ONE 5: e10296). In this study, we showed that the pancreas has a unique ability to accumulate EPA at a level markedly higher than several other tissues analyzed. Based on this finding, we sought to further investigate the anticancer actions of EPA and its analog DHA in human pancreatic cancer cells using both in vitro and in vivo models. EPA and DHA were found to induce ROS accumulation and caspase‐8‐dependent cell death in human pancreatic cancer cells (MIA‐PaCa‐2 and Capan‐2) in vitro. Feeding animals with a diet supplemented with 5% fish oil, which contains high levels of EPA and DHA, also strongly suppresses the growth of MIA‐PaCa‐2 human pancreatic cancer xenografts in athymic nude mice, by inducing oxidative stress and cell death. In addition, we showed that EPA can concomitantly induce autophagy in these cancer cells, and the induction of autophagy diminishes its ability to induce apoptotic cell death. It is therefore suggested that combination of EPA with an autophagy inhibitor may be a useful strategy in increasing the therapeutic effectiveness in pancreatic cancer. J. Cell. Biochem. 114: 192–203, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
3.
《Redox report : communications in free radical research》2013,18(4):193-197
AbstractEnhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects. 相似文献
4.
5.
Zirpoli H Caputo M Carraturo A Torino G Fazio A Attya M Rastrelli L Tecce MF 《Journal of cellular biochemistry》2012,113(3):815-823
Serum constituents might directly affect metabolic diseases pathogenesis and are commonly used as diagnostic tool. The aim of this study was to investigate the human serum effect on in vitro gene expression, related to nutrients action and involved in lipid metabolism. In detail, 40 human sera were firstly analyzed in fatty acids profile by gas-chromatography. Then samples were tested through direct addition within culture medium on Hep G2 human hepatoma cells, comparing samples from hypercholesterolemic (average 273 mg/dl) versus normocholesterolemic male subjects (average 155 mg/dl), since this condition is a relevant disease risk factor and is typically consequent to nutritional style. Hypercholesterolemic sera produced a 0.4-fold reduction of sterol regulatory element binding protein 1c (SREBP-1c) mRNA (P < 0.05) and a 1.5-fold increase of UDP-glucuronosyltransferase 1A1 (UGT1A1) mRNA (P < 0.01). Samples with higher concentrations of n-6 fatty acids produced a higher expression of UGT1A1 mRNA. Total fatty acids [docosahexaenoic, eicosopentanoic, arachidonic, linolenic, and linoleic acid (DHA, EPA, AA, LNA, and LA, respectively)] in each serum resulted roughly inverse with trend of SREBP-1c mRNA expression. Serum AA, LA, and trans fatty acids were more abundant in hypercholesterolemic subjects (P < 0.01) while DHA as quota of detected fatty acids was significantly higher in normocholesterolemic subjects (P < 0.05). While it is not possible to indicate which component was responsible for the observed gene modulations, our data indicate that sera differing in lipid profiles, mainly associated with dietary behavior, differentially affect gene expression known to be involved in metabolic and nutritional related conditions. 相似文献
6.
《Redox report : communications in free radical research》2013,18(4):146-154
AbstractPyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2–5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ. 相似文献
7.
Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role
in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H2O2)-induced cell death are unclear. This study examined the effects of H2O2 on the activation of MAPK and AP-1 by exposing the cells to H2O2 generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H2O2 affected the activities of MAPK differently according to the method of H2O2 exposure. H2O2 increased the AP-1-DNA binding activity in these cells, where continuously generated H2O2 led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH2-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H2O2-induced cell death. However, the suppression of H2O2-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed
to glucose oxidase but not to a bolus H2O2. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione.
Overall, these results suggest that H2O2 may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants,
and this depends more closely on the duration exposed to H2O2 than the concentration of this agent. 相似文献
8.
9.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation. 相似文献
10.
11.
Interaction of the c-Jun/JNK pathway and cyclin-dependent kinases in death of embryonic cortical neurons evoked by DNA damage 总被引:1,自引:0,他引:1
Ghahremani MH Keramaris E Shree T Xia Z Davis RJ Flavell R Slack RS Park DS 《The Journal of biological chemistry》2002,277(38):35586-35596
DNA damage, an important initiator of neuronal death, has been implicated in numerous neurodegenerative conditions. We previously delineated several pathways that control embryonic cortical neuronal death evoked by the DNA-damaging agent, camptothecin. In this model, the tumor suppressor p53 and cyclin-dependent kinases (CDKs) are activated independently and cooperate to mediate the conserved death pathway. To further our understanding, we presently examined whether the c-Jun/JNK pathway modulates death and whether this pathway is regulated by CDKs, p53, and Bax. We show that c-Jun/JNK is activated following DNA damage. Moreover, the c-Jun pathway is one mediator of death, because expression of dominant negative c-Jun and cdc42, and JNK pathway inhibitors are neuroprotective. Although previous evidences indicate that JNK3 is required for neuronal death under certain conditions, we show that JNK3 deficiency only partially mediates c-Jun phosphorylation and its deficiency does not protect neurons from death. Interestingly, we provide evidence that CDK activity regulates c-Jun but does not affect upstream pathways that lead to JNK phosphorylation. Finally, c-Jun activation is independent of p53 and Bax. Accordingly, we propose that c-Jun is regulated by the JNK and CDK pathways and that both must be activated for efficient c-Jun activation to occur. 相似文献
12.
13.
Cao J Semenova MM Solovyan VT Han J Coffey ET Courtney MJ 《The Journal of biological chemistry》2004,279(34):35903-35913
The stress-activated protein kinases c-Jun-activated kinase (JNK) and p38 are implicated in neuronal apoptosis. Early studies in cell lines suggested a requirement for both in the apoptosis induced by withdrawal of nerve growth factor. However, studies in neuronal cells typically implicate JNK but not p38 in apoptosis. In some cases, p38 is implicated, but the role of JNK is undefined. It remains unclear whether p38 and JNK have differing roles dependent on cell type, apoptotic stimulus, or mechanism of cell death or whether they are redundant and each sufficient to induce identical forms of cell death. We investigate the relative roles of these protein kinases in different death mechanisms in a single system, cultured cerebellar granule neurons. Apoptosis induced by withdrawal of trophic support and glutamate are mechanistically different in terms of caspase activation, DNA fragmentation profile, chromatin morphology, and dependence on de novo gene expression. Caspase-independent apoptosis induced by glutamate is accompanied by strong activation of p38, and dominant negatives and inhibitors of the p38 pathway prevent this apoptosis. In contrast, withdrawal of trophic support induces caspase-dependent death accompanied by JNK-dependent phosphorylation of c-Jun, and inhibition of JNK is sufficient to prevent the death induced by withdrawal of trophic support. Inhibition of p38 does not block withdrawal of trophic support-induced death, nor does inhibition of JNK block glutamate-induced death. We propose that mechanistically different forms of apoptosis have differing requirements for p38 and JNK activities in neurons and demonstrate that only inhibition of the appropriate kinase will prevent neurons from undergoing apoptosis. 相似文献
14.
Huang Y Hutter D Liu Y Wang X Sheikh MS Chan AM Holbrook NJ 《The Journal of biological chemistry》2000,275(24):18234-18242
Transforming growth factor (TGF)-beta1, a pleiotropic cytokine involved in regulating growth and differentiation, can exert both pro-apoptotic and anti-apoptotic effects depending on the cell type or circumstances. We observed that TGF-beta1 blocked apoptosis resulting from serum withdrawal in A549 human lung carcinoma cells. This was associated with suppression of JNK activation that occurs concomitant with the onset of apoptosis in the absence of TGF-beta1, suggesting that JNK plays an active role in the death process and that TGF-beta1 exerts its protective influence by altering JNK activity. Overexpression of a dominant negative mutant form of SEK1, an upstream activator of JNK, likewise suppressed JNK activation and inhibited apoptosis. Investigation of early events following TGF-beta1 treatment revealed an early induction and phosphorylation of c-Jun that was absent in cells subjected to serum withdrawal alone. That TGF-beta1-induced expression of c-Jun is important for survival was supported by the finding that overexpression of non-phosphosphorylatable dominant negative mutant c-Jun, c-Jun(S73A), attenuated the protective influence of TGF-beta1. Our findings suggest that JNK activation is a late but essential event in serum deprivation-induced apoptosis in A549 cells. TGF-beta1 prevents apoptosis, in part, through the early induction and phosphorylation of c-Jun, which in turn results in attenuated JNK activation. 相似文献
15.
《Redox report : communications in free radical research》2013,18(6):275-281
AbstractWe have previously shown that inhibition of catalase and glutathione peroxidase activities in rat primary hepatocytes by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS) results in sustained oxidative stress, followed by apoptosis. To examine the effects of duration of oxidative stress, ATZ and MS were removed from culture medium at 3, 6 and 9 h after treatment with both inhibitors. Oxidative stress was induced for periods of time by ATZ and MS exposures in primary hepatocytes. Treatment with ATZ and MS reduced catalase (CAT) and glutathione peroxidase (GPx) activities, and decreased CAT and GPx activities recovered to normal values upon withdrawal. Although oxidative stress of up to 6 h duration did not cause cell death, sustained oxidative stress (over 9 h) induced apoptosis. The increase in the glutathione disulfide/reduced glutathione ratio under oxidative stress up to 6 h was transient and reversible, while that due to sustained oxidative stress was irreversible. These results suggest that irreversible redox shifts resulting from sustained oxidative stress play a critical role in the induction of hepatocyte apoptosis in this experimental system. 相似文献
16.
17.
Youn Wook Chung Daewon Jeong Ok Jeong Noh Yong Hwan Park Soo Im Kang Min Goo Lee Tae-Hoon Lee Moon Bin Yim Ick Young Kim 《Molecules and cells》2009,27(5):609-613
It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats,
and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased
in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1
and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with
small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced
by treatment of H2O2 than control cells. TUNEL assays revealed that H2O2-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken
together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal
development. 相似文献
18.
19.
Chang WT Li J Haung HH Liu H Han M Ramachandran S Li CQ Sharp WW Hamann KJ Yuan CS Hoek TL Shao ZH 《Journal of cellular biochemistry》2011,112(10):2873-2881
The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. We therefore investigated if baicalein, a natural antioxidant component of Scutellaria baicalensis, could attenuate ROS generation and cell death induced by doxorubicin. Using an established chick cardiomyocyte model, doxorubicin (10 μM) increased cell death in a concentration- and time-dependent manner. ROS generation was increased in a dose-response fashion and associated with loss of mitochondrial membrane potential. Doxorubicin also augmented DNA fragmentation and increased the phosphorylation of ROS-sensitive pro-apoptotic kinase c-Jun N-terminal kinase (JNK). Adjunct treatment of baicalein (25 μM) and doxorubicin for 24 h significantly reduced both ROS generation (587 ± 89 a.u. vs. 932 a.u. ± 121 a.u., P < 0.01) and cell death (30.6 ± 5.1% vs. 46.8 ± 8.3%, P < 0.01). The dissipated mitochondrial potential and increased DNA fragmentation were also ameliorated. Along with the reduction of ROS and apoptosis, baicalein attenuated phosphorylation of JNK induced by doxorubicin (1.7 ± 0.3 vs. 3.0 ± 0.4-fold, P < 0.05). Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 μM; 24 h) reduced JNK phosphorylation and enhanced cell survival, suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Importantly, concurrent baicalein treatment did not interfere with the anti-proliferative effects of doxorubicin in human breast cancer MCF-7 cells. In conclusion, baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy. 相似文献