首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Background  

Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS) in MRS data analysis has been explored.  相似文献   

2.
Brain MR imaging techniques are important ancillary tests in the diagnosis of a suspected mitochondrial encephalopathy since they provide details on brain structural and metabolic abnormalities. This is particularly true in children where non-specific neurologic symptoms are common, biochemical findings can be marginal and genetic defects may be not discovered. MR imaging modalities include conventional, or structural, imaging (MRI) and functional, or ultrastructural, imaging (spectroscopy, MRS; diffusion, DWI-ADC; perfusion, DSCI––ASL). Among them MRI and MRS are the main tools for diagnosis and work up of MD, and this review will focus mainly on them. The MRI findings of MD are very heterogeneous, as they depend on the metabolic brain defects, age of the patient, stage and severity of the disease. No correlation has been found between genetic defects and neuroimaging picture; however, some relationships between MR findings and clinical phenotypes may be identified. Different combinations of MRI signal abnormalities are often encountered but the most common findings may be summarized into three main MR patterns: (i) non-specific; (ii) specific; (iii) leukodystrophic-like. Regarding the functional MR techniques, only proton MRS plays an important role in demonstrating an oxidative metabolism impairment in the brain since it can show the accumulation of lactate, present as a doublet peak at 1.33 ppm. Assessment of lactate should be always performed on brain tissue and on the ventricular cerebral spinal fluid. As for MRI, metabolic MRS abnormalities can be of different types, and two distinct patterns can be recognized: non-specific and specific. The specific metabolic profiles, although not frequent to find, are highly pathognomonic of MD. The un-specific metabolic profiles add value to structural images in allowing to define the lesion load and to monitor the response to therapy trials.  相似文献   

3.
Abstract: A miniature swine model for diffuse brain injury has recently been developed that replicates the inertial loading conditions associated with rotational acceleration during automotive accidents. The swine model induces diffuse axonal pathology without macroscopic injury such as contusions and hematomas, thus affording a unique opportunity to study axonal injury with noninvasive techniques such as magnetic resonance imaging (MRI) and spectroscopy (MRS). In the present study, we evaluated this diffuse injury model with proton MRS, in vivo, using a high-field (4.0-T) MR scanner, since MRS has been demonstrated as a sensitive probe for detecting neurochemical abnormalities. Our study examined a region of the swine brain at timepoints before and after brain injury. Spectroscopic results indicate that N -acetylaspartate/creatine is diminished by at least 20% in regions of confirmed axonal pathology, whereas conventional MRI did not detect any abnormalities. These findings suggest that MRS has high sensitivity in diagnosing microscopic pathology following diffuse brain injury.  相似文献   

4.
The cytoplasm of anaerobic ammonium oxidizing (anammox) bacteria consists of three compartments separated by membranes. It has been suggested that a proton motive force may be generated over the membrane of the innermost compartment, the “anammoxosome”. 31P nuclear magnetic resonance (NMR) spectroscopy was employed to investigate intracellular pH differences in the anammox bacterium Kuenenia stuttgartiensis. With in vivo NMR, spectra were recorded of active, highly concentrated suspensions of K. stuttgartiensis in a wide-bore NMR tube. At different external pH values, two stable and distinct phosphate peaks were apparent in the recorded spectra. These peaks were equivalent with pH values of 7.3 and 6.3 and suggested the presence of a proton motive force over an intracytoplasmic membrane in K. stuttgartiensis. This study provides for the second time—after discovery of acidocalcisome-like compartments in Agrobacterium tumefaciens—evidence for an intracytoplasmic pH gradient in a chemotrophic prokaryotic cell.  相似文献   

5.
Objective: We studied ob/ob and wild‐type (WT) mice to characterize the adipose tissues depots and other visceral organs and to establish an experimental paradigm for in vivo phenotyping. Research Methods and Procedures: An in vivo evaluation was conducted using magnetic resonance imaging and 1H‐magnetic resonance spectroscopy (1H‐MRS). We used T1‐weighted images and three‐dimensional spin echo T1‐weighted images for the morphological analysis and 1H‐MRS spectra on all body mass, as well as 1H‐MRS spectra focalized on specific lipid depots [triglyceride (TG) depots] for a molecular analysis. Results: In ob/ob mice, three‐dimensional evaluation of the trunk revealed that ~64% of the volume consists of white adipose tissue, which is 72% subcutaneous and 28% visceral. In vivo 1H‐MRS showed that 20.00 ± 6.92% in the WT group and 58.67 ± 6.65% in the ob/ob group of the total proton content is composed of TG protons. In in vivo‐localized spectra of ob/ob mice, we found a polyunsaturation degree of 0.5247 in subcutaneous depots. In the liver, we observed that 48.7% of the proton signal is due to water, whereas in the WT group, the water signal amounted to 82.8% of the total proton signal. With the sequences used, the TG amount was not detectable in the brain or kidneys. Discussion: The present study shows that several parameters can be obtained by in vivo examination of ob/ob mice by magnetic resonance imaging and 1H‐MRS and that the accumulated white adipose tissue displays low polyunsaturation degree and low hydrolipidic ratio. Relevant anatomical alterations observed in urinary and digestive apparatuses should be considered when ob/ob mice are used in experimental paradigms.  相似文献   

6.
In vivo magnetic resonance spectroscopy (MRS) studies of glial brain tumours reported that higher grade of astrocytoma is associated with increased level of choline-containing compounds (Cho) and decreased levels of N-acetylaspartate (NAA) and creatine and phosphocreatine (Cr). In this work, we studied the metabolism of glioma tumours by in vitro proton magnetic resonance spectroscopy (1H-MRS). 1H-MR spectra were recorded in vitro from perchloric acid extracts of astrocytoma (WHO II) and glioblastoma multiforme (WHO IV) samples. We observed differences between astrocytoma and glioblastoma multiforme in the levels of Cho, alanine, lactate, NAA, and glutamate/glutamine. In astrocytoma samples, we found higher MR signal of NAA and lower signal of Cho and alanine. MR spectra of glioblastoma samples reported significantly higher levels of lactate and glutamate/glutamine. In contrast, levels of Cr were the same in both tumour types. We also determined NAA/Cr and Cho/Cr ratios in the tumour samples. The NAA/Cr ratio was higher in astrocytomas than in glioblastomas multiforme. Conversely, the Cho/Cr ratio was higher in glioblastoma multiforme. The results indicate that MRS is a promising method for distinguishing pathologies in human brain and for pre-surgical grading of brain tumours.  相似文献   

7.
New methods of determining the structural groups —COOH and —CH2— have been developed. The investigation of carboxyl groups is possible both after derivatization with p-fluorophenacylbromide and by quantitative interpretation of the Fourier transform infrared (FT IR) spectra. There exists a linear relationship between the results of these two methods that is generally valid for the analysis of all brown coal components. The maximum extinction coefficient of the symmetric stretching vibration band of the CH2 groups has been determined using model substances. This allows quantification of this structural group directly from the FT IR spectrum. The results agree with the contents of methylene groups as determined by 13C-cross polarization–magic angle spinning–nuclear magnetic resonance (13C CPMAS NMR) spectroscopy. Using these methods, the COOH and CH2 groups contained in brown coals of the North Rhine region and in their bioconversion products have been quantified. Received: 21 December 1999 / Received revision: 25 April 2000 / Accepted: 1 May 2000  相似文献   

8.
9.
Determination of oxidative metabolism in the brain using in vivo 13C NMR spectroscopy (13C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B0 shimming. 13C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-13C2] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo 13C MRS at 9.4T. The tricarboxylic acid cycle activity rate (V TCA) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 μmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using 13C MRS in small animals.  相似文献   

10.
Brain metabolite concentrations change dynamically throughout development, especially during early childhood. The purpose of this study was to investigate the brain metabolite concentrations of neonates (postconceptional age (PCA): 30 to 43 weeks) using single-voxel magnetic resonance spectroscopy (MRS) and to discuss the relationships between the changes in the concentrations of such metabolites and brain development during the neonatal period. A total of 83 neonatal subjects were included using the following criteria: the neonates had to be free of radiological abnormalities, organic illness, and neurological symptoms; the MR spectra had to have signal-to-noise ratios ≥ 4; and the estimated metabolite concentrations had to display Cramér-Rao lower bounds of ≤ 30%. MRS data (echo time/repetition time, 30/5000 ms; 3T) were acquired from the basal ganglia (BG), centrum semiovale (CS), and the cerebellum. The concentrations of five metabolites were measured: creatine, choline, N-acetylaspartate, myo-inositol, and glutamate/glutamine complex (Glx). One hundred and eighty-four MR spectra were obtained (83 BG, 77 CS, and 24 cerebellum spectra). Creatine, N-acetylaspartate, and Glx displayed increases in their concentrations with PCA. Choline was not correlated with PCA in any region. As for myo-inositol, its concentration decreased with PCA in the BG, whereas it increased with PCA in the cerebellum. Quantitative brain metabolite concentrations and their changes during the neonatal period were assessed. Although the observed changes were partly similar to those detected in previous reports, our results are with more subjects (n = 83), and higher magnetic field (3T). The metabolite concentrations examined in this study and their changes are clinically useful indices of neonatal brain development.  相似文献   

11.
To test the efficacy of magnetic resonance spectroscopy (MRS) in identifying radiation-induced brain injury, adult male Fischer 344 rats received fractionated whole-brain irradiation (40 or 45 Gy given in 5-Gy fractions twice a week for 4 or 4.5 weeks, respectively); control rats received sham irradiation. Twelve and 52 weeks after whole-brain irradiation, rats were subjected to high-resolution MRI and proton MRS. No apparent lesions or changes in T(1)- or T(2)-weighted images were noted at either time. This is in agreement with no gross changes being found in histological sections from rats 50 weeks postirradiation. Analysis of the MR spectra obtained 12 weeks after fractionated whole-brain irradiation also failed to show any significant differences (P > 0.1) in the concentration of brain metabolites between the whole-brain-irradiated and sham-irradiated rats. In contrast, analysis of the MR spectra obtained 52 weeks postirradiation revealed significant differences between the irradiated and sham-irradiated rats in the concentrations of several brain metabolites, including increases in the NAA/tCr (P < 0.005) and Glx/tCr (P < 0.001) ratios and a decrease in the mI/tCr ratio (P < 0.01). Although the cognitive function of these rats measured by the object recognition test was not significantly different (P > 0.1) between the irradiated and sham-irradiated rats at 14 weeks postirradiation, it was significantly different (P < 0.02) at 54 weeks postirradiation. These findings suggest that MRS may be a sensitive, noninvasive tool to detect changes in radiation-induced brain metabolites that may be associated with the radiation-induced cognitive impairments observed after prolonged fractionated whole-brain irradiation.  相似文献   

12.
A novel approach to understanding the pathophysiology of schizophrenia has been the investigation of membrane composition and functional perturbations, referred to as the "Membrane Hypothesis of Schizophrenia." The evidence in support of this hypothesis has been accumulating in findings in patients with schizophrenia of reductions in phospholipids and essential fatty acids various peripheral tissues. Postmortem studies indicate similar reductions in essential fatty acids in the brain. However, the use of magnetic resonance spectroscopy (MRS) has provided an opportunity to examine aspects of membrane biochemistry in vivo in the living brain. MRS is a powerful, albeit complex, noninvasive quantitative imaging tool that offers several advantages over other methods of in vivo biochemical investigations. It has been used extensively in investigating brain biochemistry in schizophrenia. Phosphorus MRS (31P MRS) can provide important information about neuronal membranes, such as levels of phosphomonoesters that reflect the building blocks of neuronal membranes and phosphodiesters that reflect breakdown products. 31P MRS can also provide information about bioenergetics. Studies in patients with chronic schizophrenia as well as at first episode prior to treatment show a variety of alterations in neuronal membrane biochemistry, supportive of the membrane hypothesis of schizophrenia. Below, we will briefly review the principles underlying 31P MRS and findings to date. Magnetic resonance spectroscopy (MRS) is a powerful, albeit complex, imaging tool that permits investigation of brain biochemistry in vivo. It utilizes the magnetic resonance imaging hardware. It offers several advantages over other methods of in vivo biochemical investigations. MRS is noninvasive, there is no radiation exposure, does not require the use of tracer ligands or contrast media. Because of it is relatively benign, repeated measures are possible. It has been used extensively in investigating brain biochemistry in schizophrenia.  相似文献   

13.
We compared in vitro1H magnetic resonance spectroscopy (MRS) measurements of rat brain extracts (rats: 2–56 days old) with chromatographic measurements and in a further step also with results of in vivo MRS. The following substances can be reliably measured in brain extracts by in vitro MRS: N-acetylaspartate (NAA), total creatine (Cr), phosphorylethanoloamine (PE), taurine (Tau), glutamate (Glu), glutamine (Gln), -aminobutyrate (GABA) and alanine (Ala). Two different methods of MRS data evaluation compared with chromatographic data on Cr and NAA are shown. During development of the rat from day 2–56 brain concentrations of PE, Tau and Ala decrease, those of NAA, Cr, Glu and Gln increase, while GABA does not change. The developmental patterns of these substances are the same, whether measured by in vitro MRS or by chromatographic methods. Quantification of NAA, Cr, Tau, GABA and PE leads to the same results with both methods, while Glu, Gln and Ala concentrations determined by in vitro MRS are apparently lower than those measured chemically. The NAA/Cr ratios of 7 to 35-day-old rats were determined by in vivo1H MRS. These results correlate with chromatographic and in vitro data. Using appropriate methods in the in vivo and in vitro MR-technique, the obtained data compare well with the chromatographic results.  相似文献   

14.
SUMMARY 1. In vivo 1H and 31P magnetic resonance spectroscopy techniques were applied to reveal biochemical changes in the rat brain caused by prolonged ethanol consumption.2. Three models of ethanol intoxication were used.3. 1H MRS showed a significant decrease in the concentration of myo-inositol in the brain of rats fed with 20% ethanol for 8 weeks. This change is consistent with perturbances in astrocytes. On the other hand, N-acetyl aspartate and choline content did not differ from controls.4. 31P MRS did not reveal any significant changes in the high-energy phosphates or intracellular free Mg2+ content in the brain of rats after 14 weeks of 20% ethanol drinking. The intracellular pH was diminished.5. By means of a 31P saturation transfer technique, a significant decrease was observed for the pseudo first-order rate constant k for of the creatine kinase reaction in the brain of rats administered 30% ethanol for 3 weeks using a gastric tube.6. The 1H MRS results may indicate that myo-inositol loss, reflecting a disorder in astrocytes, might be one of the first changes associated with alcoholism, which could be detected in the brain by means of in vivo 1H MRS.7. The results from 31P MRS experiments suggest that alcoholism is associated with decreased brain energy metabolism.8. 31P saturation transfer, which provides insight into the turnover of high-energy phosphates, could be a more suitable technique for studying the brain energetics in chronic pathological states than conventional 31P MRS.  相似文献   

15.

Background

Placental insufficiency is a major cause of antepartum stillbirth and fetal growth restriction (FGR). In affected pregnancies, delivery is expedited when the risks of ongoing pregnancy outweigh those of prematurity. Current tests are unable to assess placental function and determine optimal timing for delivery. An accurate, non-invasive test that clearly defines the failing placenta would address a major unmet clinical need. Proton magnetic resonance spectroscopy (1H MRS) can be used to assess the metabolic profile of tissue in-vivo. In FGR pregnancies, a reduction in N-acetylaspartate (NAA)/choline ratio and detection of lactate methyl are emerging as biomarkers of impaired neuronal metabolism and fetal hypoxia, respectively. However, fetal brain hypoxia is a late and sometimes fatal event in placental compromise, limiting clinical utility of brain 1H MRS to prevent stillbirth. We hypothesised that abnormal placental 1H MRS may be an earlier biomarker of intrauterine hypoxia, affording the opportunity to optimise timing of delivery in at-risk fetuses.

Methods and Findings

We recruited three women with severe placental insufficiency/FGR and three matched controls. Using a 3T MR system and a combination of phased-array coils, a 20×20×40 mm1H MRS voxel was selected along the ‘long-axis’ of the placenta with saturation bands placed around the voxel to prevent contaminant signals. A significant choline peak (choline/lipid ratio 1.35–1.79) was detected in all healthy placentae. In contrast, in pregnancies complicated by FGR, the choline/lipid ratio was ≤0.02 in all placentae, despite preservation of the lipid peak (p<0.001).

Conclusions

This novel proof-of-concept study suggests that in severe placental insufficiency/FGR, the observed 60-fold reduction in the choline/lipid ratio by 1H MRS may represent an early biomarker of critical placental insufficiency. Further studies will determine performance of this test and the potential role of 1H-MRS in the in-vivo assessment of placental function to inform timing of delivery.  相似文献   

16.
During the past decade or so, a wealth of information about metabolites in various human brain tumour preparations (cultured cells, tissue specimens, tumours in vivo) has been accumulated by global profiling tools. Such holistic approaches to cellular biochemistry have been termed metabolomics. Inherent and specific metabolic profiles of major brain tumour cell types, as determined by proton nuclear magnetic resonance spectroscopy ((1)H MRS), have also been used to define metabolite phenotypes in tumours in vivo. This minireview examines the recent advances in the field of human brain tumour metabolomics research, including advances in MRS and mass spectrometry technologies, and data analysis.  相似文献   

17.
In vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide unique quality to attain neurochemical, physiological, anatomical, and functional information noninvasively. These techniques have been increasingly applied to biomedical research and clinical usage in diagnosis and prognosis of diseases. The ability of MRS to detect early yet subtle changes of neurochemicals in vivo permits the use of this technology for the study of cerebral metabolism in physiological and pathological conditions. Recent advances in MR technology have further extended its use to assess the etiology and progression of neurodegeneration. This review focuses on the current technical advances and the applications of MRS and MRI in the study of neurodegenerative disease animal models including amyotrophic lateral sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. Enhanced MR measurable neurochemical parameters in vivo are described in regard to their importance in neurodegenerative disorders and their investigation into the metabolic alterations accompanying the pathogenesis of neurodegeneration.  相似文献   

18.
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.  相似文献   

19.
The purpose of this research was to improve the solubility and therefore dissolution and bioavailability of triamterene, a poorly water soluble diuretic, by complexation with β-cyclodextrin. Triamterene has been reported to show low bioavailability after oral administration, with wide intersubject variation. This study presents the formulation of solid dispersions of triamterene with β-cyclodextrin—by cogrinding, kneading, and coevaporation, using low pH conditions—and their characterizations, evaluation of improvement in dissolution profiles, and in vivo advantage. Phase solubility studies indicated complex with possible stoichiometry of 1∶1 and a stability constant of 167.67M−1. The solid dispersions were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, x-ray diffraction, and differential scanning calorimetry studies. The characterization studies confirmed inclusion of the phenyl ring of triamterene within the nonpolar cavity of β-cyclodextrin in the coevaporate. Remarkable improvement in in vitro drug release profiles in 0.1 N HCl and pH 6.8 phosphate buffer was observed with all dispersions, especially the coevaporate. The coevaporate, when administered orally in rats, also exhibited improved in vivo activity, as measured by net sodium ion excretion, as compared with triamterene powder. Thus, coevaporation of the drug and β-cyclodextrin from acidified alcohol provide the optimum condition for inclusion complexation to give a binary system with remarkable improvement in in vitro drug release profile and in vivo performance.  相似文献   

20.
The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS) being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA) and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI). In this study GABA concentration in the posterior cingulate cortex (PCC) was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS) from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio) were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号