首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ca2+ release from intracellular stores of pig oocytes was investigated using the Ca2+-sensitive fluorescent dye chlorotetracycline. Oocytes were divided into growing ones and those that completed their growth using brilliant cresyl blue (BCB) staining. The stained oocytes (BCB “+”) were determined as the ones that completed their growth, while the stainless ones (BCB “−”) were determined as those in the final stages of growth. In the BCB “+” and BCB “−” oocytes, prolactin, theophylline, GTP, and GDP cause Ca2+ to exit intracellular stores. In the oocytes that completed their growth, joint action of prolactin and GTP activates additional release of Ca2+, in which protein kinase C takes part. In growing oocytes, joint action of prolactin and GTP does not lead to additional release of Ca2+. Joint action of theophylline and GDP in growing oocytes and oocytes that completed the growth stage promotes additional Ca2+ exit from intracellular stores. This exit is regulated by protein kinase A. The obtained data show that there various routes of Ca2+ release from intracellular stores in growing and grown pig oocytes.  相似文献   

2.
Felle HH  Zimmermann MR 《Planta》2007,226(1):203-214
Using apoplastic voltage- and ion selective microprobes, in barley leaves action potentials (APs) have been measured, which propagate acropetally as well as basipetally from leaf to leaf or from root to leaf following the application of mild salt stress (e.g. 30–50 mM KCl or NH4Cl) or amino acids (e.g. 1 mM glutamic acid or 5 mM GABA). Voltage changes were biphasic, followed an ‘all-or-none’ characteristic, and propagated at 20–30 cm min−1 irrespective of the direction. With the salt-induced APs, a strong initial depolarization is the main AP-releasing factor that first causes Ca2+ influx and then anion efflux. Ca2+ influx coincides with an initial slower depolarization, the rapid anion efflux causes the typical voltage ‘break-through’. Subsequently, K+-efflux starts after the depolarizing voltage has passed the K+ equilibrium potential (inversion of the K+ driving force). Glutamic acid and GABA induce APs not through membrane depolarization, but presumably by binding to a putative receptor or to ligand-gated Ca2+-conducting channels, respectively, followed by Ca2+ induced activation of anion efflux. APs are accompanied by transient apoplastic pH increase (about 1 unit), and by cytoplasmic pH decrease (about 0.5 units). The apoplastic pH change is interpreted as an indicator of stress, the cytoplasmic pH change as a prerequisite for defence related gene activation. Since APs are released by agents added in a moderate concentration range, it is suggested that they may serve as first and fast systemic signals following attack from pathogens.  相似文献   

3.
The present study describes the first characterization of Ca2+-activated Cl currents (IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 µM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 µM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.  相似文献   

4.
L-type Ca2+-channel blockers, verapamil (5 μM) and nifedipine (10 μM), have increased the quantum composition of endplate potentials (EPP) and the level of induced rhythmic activity of neogenic synapses. L-type Ca2+-channel activator BAY K 8644 (1 μM) has a decreased mediator secretion level. Nifedipine (10 μM) has not changed the frequency and amplitude of diminutive EPPs in the dormant state or during potassium depolarization. Blocking of the prejunctional ryanodine receptor with ryanodine (10 μM) led to an increase in the single EPP quantum composition that was qualitatively similar to nifedipine and verapamil, but more marked, and also caused the reinforcement of mediator release during the rhythmic EPP salvo. Ryanodine receptor activation with ryanodine (1 μM) resulted in reduction of the quantum composition of single and rhythmic EPPs. This effect was partially prevented with nifedipine (10 μM).  相似文献   

5.
Using a patch-clamp technique in the whole-cell configuration, we studied transmembrane ion currents in isolated single smooth muscle cells of the guinea pig taenia coli. A depolarizing step shift of the membrane potential from −50 mV was accompanied by the appearance of an outward current. Application of d-tubocurarine (d-TK) or a nonselective blocker of voltage-dependent potassium channels, tetraethylammonium (TEA), led to a decrease in the outward current. Application of d-TK against the background of the action of TEA additionally decreased the outward current. Analysis of the current-voltage (I–V) relationships of the d-TK-sensitive current showed that this current is practically voltage-independent. At the same time, an inflection of the I–V curve of the potassium current within the segment of maximum activation of the voltage-dependent potassium current is indicative of the sensitivity of this current to the intracellular Ca2+ concentration. Therefore, the calcium-activated potassium current through small-conductance calcium-dependent potassium channels includes a d-TK-sensitive voltage-independent component. Using depolarizing shifts of the membrane potential, we observed high- and low-amplitude spontaneous outward currents (SOCs) in many studied cells, i.e., the effect of an increase in the conductance of calcium-dependent potassium channels as a result of periodic release of Ca2+ from the intracellular stores. Application of d-TK led to a decrease in the frequency of low-amplitude SOCs and exerted nearly no influence on the high-amplitude SOCs under study. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 271–277, May–June, 2005.  相似文献   

6.
Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mitochondria are intracellular organelles, which provide cells with energy and participate in multiple processes of cell vital functions. Within one of the numerous theories of aging, dysfunction of mitochondria is considered to lead to tissue degeneration and induce the initial stage in developing of degenerative diseases. Since mitochondria play a clue role in apoptosis/necrosis processes, it was suggested that dysfunction of mitochondria observed under aging is related with disturbance of programmed cell death regulation. In the present study, a comparative examination of parameters of the functional states of mitochondria isolated from young (2–3-months old) and old (20–22-months old) rats under conditions of opening of unselective pore (PTP, permeability transition pore) has been performed. Ca2+ accumulation rate in mitochondria isolated from old rats was found to be decreased by 25–30%, threshold calcium concentration was lowered to 50%, and the swelling of mitochondria loaded by calcium was stimulated 3–4-fold. Production of reactive oxygen species (ROS) has been also determined in these mitochondria. In old mitochondria superoxide anion level was increased. In addition, H2O2 content was found to be 2 times higher in mitochondria with PTP opened. Using electron microscopy method, a decreased amount of cristae in mitochondria was revealed under aging.  相似文献   

8.
The American alligator can hibernate during winter, which may lead to osmotic imbalance because of reduced kidney function and lack of food consumption during this period. Accordingly, we hypothesized that their red blood cells would have a well-developed regulatory volume decrease (RVD) to cope with the homeostatic challenges associated with torpor. Osmotic fragility was determined optically, mean cell volume was measured by electronic sizing, and changes in intracellular Ca2+ concentration were visualized using fluorescence microscopy and fluo-4-AM. Osmotic fragility increased and the ability to regulate volume was inhibited when extracellular Na+ was replaced with K+, or when cells were exposed to the K+ channel inhibitor quinine, indicating a requirement of K+ efflux for RVD. Addition of the ionophore gramicidin to the extracellular medium decreased osmotic fragility and also potentiated volume recovery, even in the presence of quinine. In addition, hypotonic shock (0.5× Ringer) caused an increase in cytosolic Ca2+, which resulted from Ca2+ influx because it was not observed when extracellular Ca2+ was chelated with EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). Furthermore, cells loaded with BAPTA-AM (1,2-bis(2-aminophenoxymethyl)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl) ester) or exposed to a low Ca2+-EGTA hypotonic Ringer had a greater osmotic fragility and also failed to recover from cell swelling, indicating that extracellular Ca2+ was needed for RVD. Gramicidin reversed the inhibitory effect of low extracellular Ca2+. Finally, and surprisingly, the Ca2+ ionophore A23187 increased osmotic fragility and inhibited volume recovery. Taken together, our results show that cell swelling activated a K+ permeable pathway via a Ca2+-dependent mechanism, and this process mediated K+ loss during RVD.  相似文献   

9.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44–1.1 mM) or putrescine (∼0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between −80 (the reversal potential) and ∼−40 mV during voltage steps applied from −110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between −40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to −50 mV after short depolarizing steps (>0 mV), a transient increase appeared in outward currents at −50 mV. Since the peak amplitude depended on the fraction of Mg2+-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (−110 to −80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg2+-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 μM, an estimated free spermine level during whole-cell recordings) and putrescine (300 μM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

10.
We studied store-dependent (activated by depletion of the endoplasmic reticulum, ER, store) entry of Ca2+ from the extracellular medium into neurons of the rat spinal ganglia (small- and medium-sized cells; diameter, 18 to 36 μm). Activation of ryanodine-sensitive receptors of the ER in the studied neurons superfused by Tyrode solutions containing Ca2+ or with no Ca2+ was provided by application of 10 mM caffeine. The decay phase of caffeine-induced calcium transients in a Ca2+-containing solution was significantly longer than that in a Ca2+-free solution. This fact allows us to suppose that such a phenomenon is determined by Ca2+ entry into the neuron from the extracellular medium activated by caffeine-induced depletion of the ER store. Substitution of Ca2+-free extracellular solution by Ca2+-containing Tyrode solution, after depletion of the ER stores induced by applications of 100 nM ryanodine, 200 μM ATP, or 1 μM thapsigargin, resulted in increases in the concentration of intracellular Ca2+. These observations allow us to postulate that store-dependent Ca2+ entry into the studied neurons is activated after depletion not only of the inositol trisphosphate-sensitive ER store but also of the ryanodine-sensitive store. This entry also occurs after blocking of ATPases of the ER by thapsigargin. The kinetic characteristics of the rising phase of store-dependent Ca2+ entry induced by depletion of the ER stores under the influence of various agents are dissimilar; this can be related to different mechanisms of activation of such signals and/or to a compartmental organization of the ER. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 277–283, May–June, 2005.  相似文献   

11.
The characterization of T. vulgaris plant material for quality control purposes was performed by NMR-based methods. Direct extraction of 141 T. vulgaris samples with DMSO-d 6 enabled the obtainment of crude extracts with a representative composition in terms of both volatile and non-volatile constituents. The acquisition of 600 MHz 1H NMR spectra resulted in a dataset which was analyzed by a combination of metabolic profiling and target analysis approaches. Preliminary analysis of the 1H NMR spectra was performed by principal component analysis, which revealed sample discrimination on a chemotype basis (thymol, carvacrol and linalool chemotypes). Further minor discriminative constituents were identified as p-cymene, γ-terpinene, rosmarinic acid, and 3,4,3′,4′-tetrahydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl. Metabolite identification was accomplished by 1D and 2D NMR techniques and supported by spiking experiments. Fast dereplication of constituents not available as reference compounds was performed by HPLC–SPE–NMR experiments. A targeted approach based on qHNMR was validated for quantification of the identified secondary metabolites. Validation was performed in terms of precision (intra-day RSD ≤ 4.51%, inter-day RSD ≤ 4.18%), repeatability (RSD ≤ 2.30%), accuracy (recovery rates within 93.4 and 103.4%), linearity (correlation coefficients ≥ 0.9990), robustness, and stability. The amount of the dominant monoterpene in thymol, carvacrol, and linalool chemotypes was respectively found to be within 0.4–2.6, 0.7–2.3, and 1.1–3.6% (w/w). Variable amounts of the precursors p-cymene and γ-terpinene were found in thymol and carvacrol chemotypes. The highest amount of rosmarinic acid and 3,4,3′,4′-tetrahydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl in the analyzed samples was respectively 4.6 and 0.4% (w/w). Since quantification is performed on a weight basis, the essential oil content can be estimated based on the sum of the quantified monoterpenes. The NMR-based analysis of T. vulgaris represents a more comprehensive approach in comparison to traditional chromatographic methods such as GC and LC, respectively employed for the analysis of volatile and non-volatile constituents. Further advantages lie in the simple sample preparation, rapidity and reproducibility of the NMR analysis.  相似文献   

12.
The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.  相似文献   

13.
Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we characterized S100B secretion in acute hippocampal slices exposed to different concentrations of K+ and Ca2+ in the extracellular medium. Absence of Ca2+ and/or low K+ (0.2 mM KCl) caused an increase in S100B secretion, possibly by mobilization of internal stores of Ca2+. In contrast, high K+ (30 mM KCl) or calcium channel blockers caused a decrease in S100B secretion. This study suggests that exposure of acute hippocampal slices to low- and high-K+ could be used as an assay to evaluate astrocyte activity by S100B secretion: positively regulated by low K+ (possibly involving mobilization of internal stores of Ca2+) and negatively regulated by high-K+ (likely secondary to influx of K+).  相似文献   

14.
High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T 2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T 2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T 2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.  相似文献   

15.
Antibodies AB60–72 and AB80–92 against two immune-dominant epitopes of photoreceptor Ca2+-binding protein recoverin, 60-DPKAYAQHVFRSF-72 and 80-LDFKEYVIALHMT-92, which can be exposed in a Ca2+-dependent manner, were obtained. The presence of AB60–72 or AB80–92 results in a slight increase in Ca2+-affinity of recoverin and does not affect significantly a Ca2+-myristoyl switch mechanism of the protein. However in the presence of AB60–72 or AB80–92 recoverin loses its ability to interact with rhodopsin kinase and consequently to perform a function of Ca2+-sensitive inhibitor of rhodopsin phosphorylation in photoreceptor cells.  相似文献   

16.
We have previously characterized the “RCA” channel (root Ca2+ channel), a voltage-dependent, Ca2+-permeable channel found in plasma membrane-enriched vesicles from wheat roots incorporated into artificial planar lipid bilayers. Earlier work indicated that this channel was insensitive to 1,4-dihydropyridines (DHPs, such as nifedipine and 202–791). However, the present study shows that this channel is sensitive to DHPs, but only with submillimolar Ca2+, when the probability of channel opening is reduced, with flickery closures becoming increasingly evident as Ca2+ activity decreases. Under these ionic conditions, addition of nanomolar concentrations of (+) 202–791 or nifedipine caused an increase in both the probability of channel opening and the unitary conductance. It is proposed that there is a competitive interaction between Ca2+ and DHPs at one of the Ca2+-binding sites involved in Ca2+ permeation and that binding of a DHP to one of the Ca2+-permeation sites facilitates movement of other calcium ions through the channel. The present study shows that higher plant Ca2+-permeable channels can be greatly affected by very low concentrations of DHPs and that channel sensitivity may vary with the ionic conditions of the experiment. The results also indicate interesting structural and functional differences between plant and animal Ca2+-permeable channels.  相似文献   

17.
Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M n+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.  相似文献   

18.
In this study, the effects of Cd on root growth, respiration, and transmembrane electric potential (E m) of the outer cortical cells in maize roots treated with various Cd concentrations (from 1 μM to 1 mM) for several hours to one week were studied. The E m values of root cells ranged between −120 and −140 mV and after addition of Cd they were depolarized immediately. The depolarization was concentration-dependent reaching the value of diffusion potential (E D) when the Cd concentration exceeded 100 μM. The values of E D ranged between −65 to −68 mV (−66 ± 1.42 mV). The maximum depolarization of E m was registered approx. 2.5 h after addition of Cd to the perfusion solution and in some cases, partial (Cd > 100 μM) or complete repolarization (Cd < 100 μM) was observed within 8–10 h of Cd treatment. In the time-dependent experiments (0 to 168 h) shortly after the maximum repolarization of E m a continuous concentration-dependent decrease of E m followed at all Cd concentrations. Depolarization of E m was accompanied by both increased electrolyte leakage and inhibition of respiration, especially in the range of 50 μM to 1 mM Cd, with the exception of root cells treated with 1 and 10 μM Cd for 24 and 48 h. Time course analysis of Cd impact on root respiration revealed that at higher Cd concentrations (> 50 μM) the respiration gradually declined (∼ 6 h) and then remained at this lowest level for up to 24 h. All the Cd concentrations used in this experiment induced significant inhibition of root elongation and concentrations higher than 100 μM stopped the root growth within the first day of Cd treatment. Our results suggest that Cd does not cause irreversible changes in the electrogenic plasma membrane H+ ATPase because fusicoccin, an H+ ATPase activator diminished the depolarizing effect of Cd on the E m. The depolarization of E m in the outer cortical cells of maize roots was the result of a cumulative effect of Cd on ATP supply, plasmalemma permeability, and activity of H+ ATPase.  相似文献   

19.
The primary target for cocaine is believed to be monoamine transporters because of cocaine’s high-affinity binding that prevents re-uptake of released neurotransmitter. However, direct interaction with ion channels has been shown to be important for certain pharmacological/toxicological effects of cocaine. Here I show that cocaine selectively blocks a calcium-dependent K+ channel in hippocampal neurons grown in culture (IC50 = ∼30 μM). Single-channel recordings show that in the presence of cocaine, the channel openings are interrupted with brief closures (flicker block). As the concentration of cocaine is increased the open-time is reduced, whereas the duration of brief closures is independent of concentration. The association and dissociation rate constants of cocaine for the neuronal Ca2+-activated K+ channels are 261 ± 37 μM−1s−1 and 11451 ± 1467 s−1. The equilibrium dissociation constant (KB) for cocaine, determined from single-channel parameters, is 43 μM. The lack of voltage dependence of block suggests that cocaine probably binds to a site at the mouth of the pore. Block of Ca2+-dependent K+ channels by cocaine may be involved in functions that include broadening of the action potential, which would facilitate transmitter release, enhancement of smooth muscle contraction particularly in blood vessels, and modulation of repetitive neuronal firing by altering the repolarization and afterhyperpolarization phases of the action potential.  相似文献   

20.
Experiments on cultured mouse adipocytes (9 days in vitro) using fluorescent microscopy have shown that activation of α1- and α2-adrenoceptors by norepinephrine (NE) or α2-adrenoreceptors by L-arginine evokes transient Ca2+ signals, while activation of m3-cholinoreceptors by acetylcholine (ACh) or betaine causes sustained or damped Ca2+ oscillations. The presence in the incubation medium of L-arginine at a low concentration (100–200 μM) is necessary for a vigorous manifestation of these effects, apparently due to transition of protein kinase G (PKG) and phosphodiesterase V into an active state. In the presence of 1–10 mM L-arginine, the amplitude of the Ca2+ transient response to NE increases and signal duration decreases. ACh and NE upon a sequential addition mutually potentiate their effects. Using an inhibitory analysis we show that the observed modes are related to the operation of a signaling pathway with the participation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), endothelial NO synthase (eNOS), cytoplasmic guanylate cyclase (sGC), protein kinase G (PKG), ADP-ribosyl cyclase (CD38), and the ryanodine receptor (RyR). The formation of several loops of positive feedbacks (PF) and negative feedbacks (NF) in the signaling system is possible: (i) short PF loops due to Ca2+-induced Ca2+ release (CICR) from internal stores through the inositol trisphosphate receptor (IP3R) and RyR participating in the transient signal formation; (ii) long PF loop Ca2+ → eNOS → sGC → PKG → CD38 → RyR → Ca2+, which can provide necessary conditions for calcium oscillations arising from short PF loops (CICR); (iii) several NF loops based on PKG-mediated inhibition of IP3R and activation of Ca2+-ATPases of sarco(endo)plasmic reticulum and of the plasma membrane providing a shutdown of signaling by the pathway phospholipase C → IP3R → Ca2+ and limiting Ca2+ rise caused by the pathway PI3K → PKB → eNOS → sGC → PKG → CD38 → RyR → Ca2+. Convergence of signaling pathways that involve α1-, α2-, and m3-receptors and then Gβγ-subunits of Gq and Gq proteins acting on PI3Kγ can provide activation of cytoplasmic PKG, which plays a key role in producing transient responses, in activation of Ca2+ removal and generation of [Ca2+]i oscillations. PKG inhibition (implemented here by KT5823 application) in the presence of any agonist results in rupture of NF loops controlling Ca2+ transporting systems activity that leads to uncontrolled [Ca2+]i rise and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号