首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures.  相似文献   

2.

Background  

We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm.  相似文献   

3.

Background  

Soon after the first algorithms for RNA folding became available, it was recognised that the prediction of only one energetically optimal structure is insufficient to achieve reliable results. An in-depth analysis of the folding space as a whole appeared necessary to deduce the structural properties of a given RNA molecule reliably. Folding space analysis comprises various methods such as suboptimal folding, computation of base pair probabilities, sampling procedures and abstract shape analysis. Common to many approaches is the idea of partitioning the folding space into classes of structures, for which certain properties can be derived.  相似文献   

4.

Background  

Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures.  相似文献   

5.

Background

Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential.

Results

We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons.

Conclusion

Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.  相似文献   

6.

Background  

Alignment of RNA secondary structures is important in studying functional RNA motifs. In recent years, much progress has been made in RNA motif finding and structure alignment. However, existing tools either require a large number of prealigned structures or suffer from high time complexities. This makes it difficult for the tools to process RNAs whose prealigned structures are unavailable or process very large RNA structure databases.  相似文献   

7.

Background  

In sequence analysis the multiple alignment builds the fundament of all proceeding analyses. Errors in an alignment could strongly influence all succeeding analyses and therefore could lead to wrong predictions. Hand-crafted and hand-improved alignments are necessary and meanwhile good common practice. For RNA sequences often the primary sequence as well as a secondary structure consensus is well known, e.g., the cloverleaf structure of the t-RNA. Recently, some alignment editors are proposed that are able to include and model both kinds of information. However, with the advent of a large amount of reliable RNA sequences together with their solved secondary structures (available from e.g. the ITS2 Database), we are faced with the problem to handle sequences and their associated secondary structures synchronously.  相似文献   

8.
Abstract

The process of designing novel RNA sequences by inverse RNA folding, available in tools such as RNAinverse and InfoRNA, can be thought of as a reconstruction of RNAs from secondary structure. In this reconstruction problem, no physical measures are considered as additional constraints that are independent of structure, aside of the goal to reach the same secondary structure as the input using energy minimization methods. An extension of the reconstruction problem can be formulated since in many cases of natural RNAs, it is desired to analyze the sequence and structure of RNA molecules using various physical quantifiable measures. In prior works that used secondary structure predictions, it has been shown that natural RNAs differ significantly from random RNAs in some of these measures. Thus, we relax the problem of reconstructing RNAs from secondary structure into reconstructing RNAs from shapes, and in turn incorporate physical quantities as constraints. This allows for the design of novel RNA sequences by inverse folding while considering various physical quantities of interest such as thermodynamic stability, mutational robustness, and linguistic complexity. At the expense of altering the number of nucleotides in stems and loops, for example, physical measures can be taken into account. We use evolutionary computation for the new reconstruction problem and illustrate the procedure on various natural RNAs.  相似文献   

9.

Background  

The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework.  相似文献   

10.

Background

The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented.

Results

TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a significance threshold are shown to be more accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure prediction, has accuracy comparable to the best performing secondary structure prediction methods. The computational and memory requirements for TurboFold are modest and, in terms of sequence length and number of sequences, scale much more favorably than joint alignment and folding algorithms.

Conclusions

TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA sequences that efficiently and accurately combines the information from the comparative analysis between sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of the RNAstructure package at http://rna.urmc.rochester.edu.  相似文献   

11.

Background

Ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Their secondary structures are crucial for the RNA functionality, and the prediction of the secondary structures is widely studied. Our previous research shows that cutting long sequences into shorter chunks, predicting secondary structures of the chunks independently using thermodynamic methods, and reconstructing the entire secondary structure from the predicted chunk structures can yield better accuracy than predicting the secondary structure using the RNA sequence as a whole. The chunking, prediction, and reconstruction processes can use different methods and parameters, some of which produce more accurate predictions than others. In this paper, we study the prediction accuracy and efficiency of three different chunking methods using seven popular secondary structure prediction programs that apply to two datasets of RNA with known secondary structures, which include both pseudoknotted and non-pseudoknotted sequences, as well as a family of viral genome RNAs whose structures have not been predicted before. Our modularized MapReduce framework based on Hadoop allows us to study the problem in a parallel and robust environment.

Results

On average, the maximum accuracy retention values are larger than one for our chunking methods and the seven prediction programs over 50 non-pseudoknotted sequences, meaning that the secondary structure predicted using chunking is more similar to the real structure than the secondary structure predicted by using the whole sequence. We observe similar results for the 23 pseudoknotted sequences, except for the NUPACK program using the centered chunking method. The performance analysis for 14 long RNA sequences from the Nodaviridae virus family outlines how the coarse-grained mapping of chunking and predictions in the MapReduce framework exhibits shorter turnaround times for short RNA sequences. However, as the lengths of the RNA sequences increase, the fine-grained mapping can surpass the coarse-grained mapping in performance.

Conclusions

By using our MapReduce framework together with statistical analysis on the accuracy retention results, we observe how the inversion-based chunking methods can outperform predictions using the whole sequence. Our chunk-based approach also enables us to predict secondary structures for very long RNA sequences, which is not feasible with traditional methods alone.
  相似文献   

12.

Background  

Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods.  相似文献   

13.

Background

The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies.

Results

The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization.

Conclusions

The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at “http://rna.physics.missouri.edu”.  相似文献   

14.

Background  

Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described.  相似文献   

15.
We present an RNA-As-Graphs (RAG) based inverse folding algorithm, RAG-IF, to design novel RNA sequences that fold onto target tree graph topologies. The algorithm can be used to enhance our recently reported computational design pipeline (Jain et al., NAR 2018). The RAG approach represents RNA secondary structures as tree and dual graphs, where RNA loops and helices are coarse-grained as vertices and edges, opening the usage of graph theory methods to study, predict, and design RNA structures. Our recently developed computational pipeline for design utilizes graph partitioning (RAG-3D) and atomic fragment assembly (F-RAG) to design sequences to fold onto RNA-like tree graph topologies; the atomic fragments are taken from existing RNA structures that correspond to tree subgraphs. Because F-RAG may not produce the target folds for all designs, automated mutations by RAG-IF algorithm enhance the candidate pool markedly. The crucial residues for mutation are identified by differences between the predicted and the target topology. A genetic algorithm then mutates the selected residues, and the successful sequences are optimized to retain only the minimal or essential mutations. Here we evaluate RAG-IF for 6 RNA-like topologies and generate a large pool of successful candidate sequences with a variety of minimal mutations. We find that RAG-IF adds robustness and efficiency to our RNA design pipeline, making inverse folding motivated by graph topology rather than secondary structure more productive.  相似文献   

16.

Background  

We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations.  相似文献   

17.

Background  

β-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains.  相似文献   

18.
Algorithms predicting RNA secondary structures based on different folding criteria – minimum free energies (mfe), kinetic folding (kin), maximum matching (mm) – and different parameter sets are studied systematically. Two base pairing alphabets were used: the binary GC and the natural four-letter AUGC alphabet. Computed structures and free energies depend strongly on both the algorithm and the parameter set. Statistical properties, such as mean number of base pairs, mean numbers of stacks, mean loop sizes, etc., are much less sensitive to the choice of parameter set and even of algorithm. Some features of RNA secondary structures, such as structure correlation functions, shape space covering and neutral networks, seem to depend only on the base pairing logic (GC or AUGC alphabet). Received: 16 May 1996 / Accepted: 10 July 1996  相似文献   

19.

Background  

The secondary structure and complexity of mRNA influences its accessibility to regulatory molecules (proteins, micro-RNAs), its stability and its level of expression. The mobile elements of the RNA sequence, the wobble bases, are expected to regulate the formation of structures encompassing coding sequences.  相似文献   

20.

Background  

Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号