首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this article, the characterization and evolution of pseudo-endoglucanases and a putative expansin-like gene in the migratory nematode Ditylenchus africanus are described. Four genes were cloned with a very high similarity to the endoglucanase Da-eng1, which, however, lack a part of the catalytic domain most probably due to homologous recombination. Owing to this deletion, at least one of the catalytic residues of the corresponding protein is missing, and hence these genes are possibly pseudogenes. In two of the pseudo-endoglucanase genes, the deletions cause a frameshift (Da-engdel2, Da-engdel4), while two others (Da-engdel1, Da-engdel3) code for protein sequences with an intact carbohydrate-binding module (CBM). Recombinant proteins for Da-ENG1, Da-ENGDEL1, and Da-ENGDEL3 were demonstrated to bind to cellulose, while only Da-ENG1 showed cellulose-degrading activity. This indicates that Da-ENGDEL1 and Da-ENGDEL3 which lack cellulase activity, could still exert a function similar to cellulose-binding proteins (CBPs). Next to the pseudo-endoglucanases, a putative expansin-like gene (Da-exp1) was identified, consisting of a signal peptide, an expansin-like domain, and a CBM. This domain structure was never found before in nematode expansin-like proteins. Interestingly, the CBM of the expansin-like gene is very similar to the endoglucanase CBMs, and a conserved intron position in the CBM of nematode endoglucanases, expansin-like genes, and CBPs indicates a common origin for these domains. This suggests that domain shuffling is an important mechanism in the evolution of cell wall-modifying enzymes in nematodes.  相似文献   

2.

Background  

Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included.  相似文献   

3.
Plant biomass holds a promise for the production of second-generation ethanol via enzymatic hydrolysis, but its utilization as a biofuel resource is currently limited to a large extent by the cost and low efficiency of the cellulolytic enzymes. Considerable efforts have been dedicated to elucidate the mechanisms of the enzymatic process. It is well known that most cellulases possess a catalytic core domain and a carbohydrate binding module (CBM), without which the enzymatic activity can be drastically reduced. However, Cel12A members of the glycosyl hydrolases family 12 (GHF12) do not bear a CBM and yet are able to hydrolyze amorphous cellulose quite efficiently. Here, we use X-ray crystallography and molecular dynamics simulations to unravel the molecular basis underlying the catalytic capability of endoglucanase 3 from Trichoderma harzianum (ThEG3), a member of the GHF12 enzymes that lacks a CBM. A comparative analysis with the Cellulomonas fimi CBM identifies important residues mediating interactions of EG3s with amorphous regions of the cellulose. For instance, three aromatic residues constitute a harboring wall of hydrophobic contacts with the substrate in both ThEG3 and CfCBM structures. Moreover, residues at the entrance of the active site cleft of ThEG3 are identified, which might hydrogen bond to the substrate. We advocate that the ThEG3 residues Asn152 and Glu201 interact with the substrate similarly to the corresponding CfCBM residues Asn81 and Arg75. Altogether, these results show that CBM motifs are incorporated within the ThEG3 catalytic domain and suggest that the enzymatic efficiency is associated with the length and position of the substrate chain, being higher when the substrate interact with the aromatic residues at the entrance of the cleft and the catalytic triad. Our results provide guidelines for rational protein engineering aiming to improve interactions of GHF12 enzymes with cellulosic substrates.  相似文献   

4.
This report describes the first serine proteinase gene isolated from the sedentary nematode Meloidogyne incognita. Using degenerate primers, a 1372bp cDNA encoding a chymotrypsin-like serine proteinase (Mi-ser1) was amplified from total RNA of adult females by RT-PCR and 5' and 3' rapid amplification of cDNA ends. The deduced amino acid sequence of Mi-ser1 encoded a putative signal peptide and a prodomain of 22 and 33 amino acids, respectively, and a mature proteinase of 341 amino acids with a predicted molecular mass of 37,680Da. Sequence identity with the top serine proteinases matches from the databases ranged from 23 to 27%, including sequences from insects, mammals, and other nematodes. Southern blot analysis suggested that Mi-ser1 is encoded by a single or few gene copies. The pattern of developmental expression analyzed by Northern blot and RT-PCR indicated that Mi-ser1 was transcribed mainly in females. The domain architecture composed of a single chymotrypsin-like catalytic domain and the detection of a putative signal peptide suggested a digestive role for Mi-ser1.  相似文献   

5.
Three endoglucanase genes (cel5A, cel5B, and cel61A) were cloned from an industrial fungus, Aspergillus kawachii. Yeasts transformed with these cDNAs showed endoglucanase activity in medium. Cel5A and Cel61A contained a type 1 cellulose-binding domain (CBD1) at the C-terminus of the enzyme. The putative catalytic regions of Cel5A and Cel5B showed homology with various endoglucanases belonging glycosyl hydrolase family 5 (GH5). Cel5B showed high homology with Cel5A in catalytic region, but it lacked CBD1 and linker. The cel5A contained four introns, whereas cel5B contained five introns. The putative catalytic region of Cel61A showed homology with enzymes belonging to GH61. The cel61A contained no introns.  相似文献   

6.
The nucleotide sequence of the gene encoding the cellulose-binding protein B (CBPB) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3,429 nucleotides. The deduced amino acid sequence of CBPB contained one module highly similar to a catalytic module of glycosyl hydrolase family 9 (GHF9), one module partially similar to a family 3 carbohydrate-binding module (CBM3), two linkers, one module similar to a CBM of cellulose-binding protein A (CBPA) from E. cellulosolvens 5, and one module almost identical to a cell wall-binding module (CWBM) of CBPA. The module similar to GHF9 showed CMCase activity, and the modules similar to CBM3 and CBM of CBPA bound to cellulose. Moreover, the module highly similar to CWBM of CBPA bound to the cell walls prepared from E. cellulosolvens 5. The amino acid sequence of CBPB had a significant homology (64.15% sequence identity) with that of CBPA. These results suggest that cbpA and cbpB genes descended from the same ancestral cellulase gene.  相似文献   

7.
The most abundant organic compound produced by plants is cellulose; however, it has long been accepted that most animals do not produce endogenous enzymes required for its degradation, but rely instead on symbiotic relationships with microbes that produce the necessary enzymes. Here, we present the genomic organisation of an endogenous glycosyl hydrolase family (GHF) 9 gene in redclaw crayfish (Cherax quadricarinatus), consolidated from a cDNA sequence determined by Byrne et al. [Gene 239 (1999) 317–324.]. Comparison with several other invertebrate GHF9 genes reveals the conservation of both intron position/phase and splice sequence, which adds support to an argument for an ancestral animal cellulase gene. Furthermore, two introns in plant GHF9 genes are also identical in position, implying a more ancient origin for this class of animal cellulase.

Protein purification from redclaw gastric fluid via fast performance liquid chromatography (FPLC) indicated the presence of two endoglucanase enzymes. The molecular weights of these components were determined by matrix-assisted laser desorption/ionisation—time-of-flight (MALDI-TOF) to be 47,887 Da (Cel1) and 50,295 Da (Cel2). Cel1 is possibly the functional product of the described cellulase gene, with N-terminal amino acid residues identical to the translated amino acid sequence from the corresponding gene region. Cel2 was identical to Cel1 for 7 of 11 N-terminal residues and likely to be the product of a paralogous endoglucanase gene. These results suggest that redclaw crayfish possess at least one and possibly two functional, endoglucanase enzymes, although further work is required to confirm their origin and attributes.  相似文献   


8.
A gene encoding a manganese superoxide dismutase (MnSOD) enzyme (Mi-mnsod) was identified and characterized in second-stage juveniles of the root-knot nematode Meloidogyne incognita. The Mi-mnsod gene was found to possess five exons and four introns with (GT/AG) consensus splice-site junctions. The deduced amino acid sequence of Mi-mnsod encodes a putative 25 KDa protein, with conserved amino acid residues of the MnSOD family, including the Parker-Blake signature and four metal-binding sites. The derived amino acid sequence showed high similarity to other eukaryotic MnSODs, including a 23 amino acid N-terminal putative mitochondrial transit peptide. Gene expression was observed throughout the posterior nematode body region with elevated signal intensities at the anterior portion of the intestine. DNA blot analysis and sequencing data showed the occurrence of three putative copies of the MnSOD gene with nucleotide polymorphisms found at the fourth exon and the 3' un-translated region.  相似文献   

9.
Three endoglucanase genes (cel5A, cel5B, and cel61A) were cloned from an industrial fungus, Aspergillus kawachii. Yeasts transformed with these cDNAs showed endoglucanase activity in medium. Cel5A and Cel61A contained a type 1 cellulose-binding domain (CBD1) at the C-terminus of the enzyme. The putative catalytic regions of Cel5A and Cel5B showed homology with various endoglucanases belonging glycosyl hydrolase family 5 (GH5). Cel5B showed high homology with Cel5A in catalytic region, but it lacked CBD1 and linker. The cel5A contained four introns, whereas cel5B contained five introns. The putative catalytic region of Cel61A showed homology with enzymes belonging to GH61. The cel61A contained no introns.  相似文献   

10.
The genomic organization of genes encoding β-1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of 2151 and 2492 bp, respectively. HG-eng2 and GR-eng2 both contained seven introns and structural domains of 2324 and 2388 bp, respectively. No significant similarity in intron sequence or size was observed between HG-eng1 and HG-eng2, whereas the opposite was true between GR-eng1 and GR-eng2. Intron positions among all four cyst nematode cellulase genes were conserved identically in relation to the predicted amino acid sequence. HG-eng1, GR-eng1, and GR-eng2 had several introns demarcated by 5′-GC…AG-3′ in the splice sites, and all four nematode cellulase genes had the polyadenylation and cleavage signal sequence 5′-GAUAAA-3′—both rare occurences in eukaryotic genes. The 5′- flanking regions of each nematode cellulase gene, however, had signature sequences typical of eukaryotic promoter regions, including a TATA box, bHLH-type binding sites, and putative silencer, repressor, and enhancer elements. Database searches and subsequent phylogenetic comparison of the catalytic domain of the nematode cellulases placed the nematode genes in one group, with Family 5, subfamily 2, glycosyl hydrolases from Scotobacteria and Bacilliaceae as the most homologous groups. The overall amino acid sequence identity among the four nematode cellulases was from 71 to 83%, and the amino acid sequence identity to bacterial Family 5 cellulases ranged from 33 to 44%. The eukaryotic organization of the four cyst nematode cellulases suggests that they share a common ancestor, and their strong homology to prokaryotic glycosyl hydrolases may be indicative of an ancient horizontal gene transfer.  相似文献   

11.
At least three acetyl xylan esterases (AXE I, II and III) are secreted by Penicillium purpurogenum. This publication describes more detailed work on AXE I and its gene. AXE I binds cellulose but not xylan; it is glycosylated and inactivated by phenylmethylsulphonyl fluoride, showing that it is a serine esterase. The axe1 gene presents an open reading frame of 1278 bp, including two introns of 68 and 61 bp; it codes for a signal peptide of 31 residues and a mature protein of 351 amino acids (molecular weight 36,693). AXE I has a modular structure: a catalytic module at the amino terminus belonging to family 1 of the carbohydrate esterases, a linker rich in serines and threonines, and a family 1 carboxy terminal carbohydrate binding module (CBM). The CBM is similar to that of AXE from Trichoderma reesei, (with a family 5 catalytic module) indicating that the genes for catalytic modules and CBMs have evolved separately, and that they have been linked by gene fusion. The promoter sequence of axe1 contains several putative sequences for binding of gene expression regulators also found in other family 1 esterase gene promoters. It is proposed that AXE I and II act in succession in xylan degradation; first, xylan is attacked by AXE I and other xylanases possessing CBMs (which facilitate binding to lignocellulose), followed by other enzymes acting mainly on soluble substrates.  相似文献   

12.
An esterase gene from Neisseria sicca SB encoding CaeA, which catalyzes the deacetylation of cellulose acetate, was cloned. CaeA contained a putative catalytic domain of carbohydrate esterase family 1 and a carbohydrate-binding module (CBM) family 2. We constructed two derivatives, with and without the CBM of CaeA. Binding assay indicated that the CBM of CaeA had an affinity for cellulose.  相似文献   

13.
The model 3-D structure of xylanase KRICT PX3 (JF320814) identified by DNA sequence analysis revealed a catalytic domain and CBM4-9 which functions as a xylan binding domain (XBD). To identify its role in xylan hydrolysis, six expression plasmids were constructed encoding the N-terminal CBM plus the catalytic domain or different glycosyl hydrolases, and the biochemical properties of the recombinant enzymes were compared to the original structure of PX3 xylanase. All six of the recombinant xylanases with the addition of CBM in the pIVEX-GST expression vector showed no improved PX3 hydrolytic activity. However, the absence of the CBM domain resulted in a decrement of 40% in thermostability, movement of the optimal temperature from 55 °C to 45 °C, alteration of the optimal pH range from 5⿿10 to 6⿿8, and reduction of the enzymatic activity to one-second under the same condition, respectively. The putative XBD in PX3 comprises a new N-terminal domain homologous to the catalytic thermostabilizing domains from other xylanases. Analysis of the main products released from xylan indicate that the recombinant enzymes act as endo-1,4-β-xylanases but differ in their hydrolysis of xylan from beech wood, birch wood, and oat spelt.  相似文献   

14.
The degradation of xylan requires the action of glycanases and esterases which hydrolyse, in a synergistic fashion, the main chain and the different substituents which decorate its structure. Among the xylanolytic enzymes acting on side-chains are the α-glucuronidases (AguA) (E.C. 3.2.1.139) which release methyl glucuronic acid residues. These are the least studies among the xylanolytic enzymes. In this work, the gene and cDNA of an α-glucuronidase from a newly isolated strain of Aspergillus fumigatus have been sequenced, and the gene has been expressed in Pichia pastoris. The gene is 2523 bp long, has no introns and codes for a protein of 840 amino acid residues including a putative signal peptide of 19 residues. The mature protein has a calculated molecular weight of 91 725 and shows 99 % identity with a putative α-glucuronidase from A. fumigatus A1163. The recombinant enzyme was expressed with a histidine tag and was purified to near homogeneity with a nickel nitriloacetic acid (Ni-NTA) column. The purified enzyme has a molecular weight near 100 000. It is inactive using birchwood glucuronoxylan as substrate. Activity is observed in the presence of xylooligosaccharides generated from this substrate by a family 10 endoxylanase and when a mixture of aldouronic acids are used as substrates. If, instead, family 11 endoxylanase is used to generate oligosaccharides, no activity is detected, indicating a different specificity in the cleavage of xylan by family 10 and 11 endoxylanases. Enzyme activity is optimal at 37 °C and pH 4.5–5. The enzyme binds cellulose, thus it likely possesses a carbohydrate binding module. Based on its properties and sequence similarities the catalytic module of the newly described α-glucuronidase can be classified in family 67 of the glycosyl hydrolases. The recombinant enzyme may be useful for biotechnological applications of α-glucuronidases.  相似文献   

15.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

16.
A cDNA fragment encoding the A catalytic domain of the Neocallimastix frontalis endoxylanase XYN3 was amplified and cloned by the polymerase chain reaction technique. The xyn3A DNA fragment was inserted between the Saccharomyces cerevisiae phosphoglycerate kinase gene promoter and terminator sequences on a multicopy episomal plasmid for Kluyveromyces lactis. The XYN3A domain was successfully expressed in K. lactis and functional endoxylanase was secreted by the yeast cells with the K. lactis killer toxin secretion signal. The XYN3A domain was also expressed in a strain of Penicillium roqueforti as a fusion protein (ShBLE::XYN3A) of the phleomycin-resistance gene product and the endoxylanase. Active endoxylanase was efficiently secreted from the fungal cells with the Trichoderma viride cellobiohydrolase (CBH1) secretion signal and processed by a related KEX2 endoprotease of the secretion pathway. Several differently glycosylated forms of the recombinant enzymes were secreted by the yeast and the filamentous fungus. Received: 10 November 1998 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

17.
Glycoside hydrolase (GH) family 13 comprises about 30 different specificities. Four of them have been proposed to form the GH13 pullulanase subfamily: pullulanase, isoamylase, maltooligosyl trehalohydrolase and branching enzyme forming the seven CAZy GH13 subfamilies: GH13 8-GH13 14. Recently, a new family of carbohydrate-binding modules (CBMs), the family CBM48 has been established containing the putative starch-binding domains from the pullulanase subfamily, the β-subunit of AMP-activated protein kinase and some other GH13 enzymes with pullulanase and/or α-amylase-pullulanase specificity. Since all of these enzymes are multidomain proteins and the structure for at least one representative of each enzyme specificity has already been determined, the main goal of the present study was to elucidate domain evolution within this GH13 pullulanase subfamily (84 real enzymes) focusing on the CBM48 module. With regard to CBM48 positioning in the amino acid sequence, the N-terminal end of a protein appears to be a predominant position. This is especially true for isoamylases and maltooligosyl trehalohydrolases. Secondary structure-based alignment of CBM modules from CBM48, CBM20 and CBM21 revealed that several residues known as consensus for CBM20 and CBM21 could also be identified in CBM48, but only branching enzymes possess the aromatic residues that correspond with the two tryptophans forming the evolutionary conserved starch-binding site 1 in CBM20. The evolutionary trees constructed for the individual domains, complete alignment, and the conserved sequence regions of the α-amylase family were found to be comparable to each other (except for the C-domain tree) with two basic parts: (i) branching enzymes and maltooligosyl trehalohydrolases; and (ii) pullulanases and isoamylases. Taxonomy was respected only within clusters with pure specificity, i.e. the evolution of CBM48 reflects the evolution of specificities rather than evolution of species. This is a feature different from the one observed for the starch-binding domain of the family CBM20 where the starch-binding domain evolution reflects the evolution of species.  相似文献   

18.
19.
Nishida Y  Suzuki K  Kumagai Y  Tanaka H  Inoue A  Ojima T 《Biochimie》2007,89(8):1002-1011
Glycoside-hydrolase-family 9 (GHF9) cellulases are known to be widely distributed in metazoa. These enzymes have been appreciably well investigated in protostome invertebrates such as arthropods, nematodes, and mollusks but have not been characterized in deuterostome invertebrates such as sea squirts and sea urchins. In the present study, we isolated the cellulase from the Japanese purple sea urchin Strongylocentrotus nudus and determined its enzymatic properties and primary structure. The sea urchin enzyme was extracted from the acetone-dried powder of digestive tract of S. nudus and purified by conventional chromatographies. The purified enzyme, which we named SnEG54, showed a molecular mass of 54kDa on SDS-PAGE and exhibited high hydrolytic activity toward carboxymethyl cellulose with an optimum temperature and pH at 35 degrees C and 6.5, respectively. SnEG54 degraded cellulose polymer and cellooligosaccharides larger than cellotriose producing cellotriose and cellobiose but not these small cellooligosaccharides. From a cDNA library of the digestive tract we cloned 1822-bp cDNA encoding the amino-acid sequence of 444 residues of SnEG54. This sequence showed 50-57% identity with the sequences of GHF9 cellulases from abalone, sea squirt, and termite. The amino-acid residues crucial for the catalytic action of GHF9 cellulases are completely conserved in the SnEG54 sequence. An 8-kbp structural gene fragment encoding SnEG54 was amplified by PCR from chromosomal DNA of S. nudus. The positions of five introns are consistent with those in other animal GHF9 cellulase genes. Thus, we confirmed that the sea urchin produces an active GHF9 cellulase closely related to other animal cellulases.  相似文献   

20.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号