首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steering responses of three species of field crickets, Teleogryllus oceanicus, T. commodus, and Gryllus bimaculatus, were characterized during tethered flight using single tone-pulses (rather than model calling song) presented at carrier frequencies from 3-100 kHz. This range of frequencies encompasses the natural songs of crickets (4-20 kHz, Fig. 1) as well as the echolocation cries of insectivorous bats (12-100 kHz). The single-pulse stimulus paradigm was necessary to assess the aversive nature of high carrier frequencies without introducing complications due to the attractive properties of repeated pulse stimuli such as model calling songs. Unlike the natural calling song, single tone-pulses were not attractive and did not elicit positive phonotactic steering even when presented at the calling song carrier frequency (Figs. 2, 3, and 9). In addition to temporal pattern, phonotactic steering was sensitive to carrier frequency as well as sound intensity. Three discrete flight steering behaviors positive phonotaxis, negative phonotaxis and evasion, were elicited by appropriate combinations of frequency, temporal pattern and sound intensity (Fig. 12). Positive phonotactic steering required a model calling song temporal pattern, was tuned to 5 kHz and was restricted to frequencies below 9 kHz. Negative phonotactic steering, similar to the 'early warning' bat-avoidance behavior of moths, was produced by low intensity (55 dB SPL) tone-pulses at frequencies between 12 and 100 kHz (Figs. 2, 3, and 9). In contrast to model calling song, single tone-pulses of high intensity 5-10 kHz elicited negative phonotactic steering; low intensity ultrasound (20-100 kHz) produced only negative phonotactic steering, regardless of pulse repetition pattern. 'Evasive', side-to-side steering, similar to the 'last-chance' bat-evasion behavior of moths was produced in response to high intensity (greater than 90 dB) ultrasound (20-100 kHz). Since the demonstration of negative phonotactic steering did not require the use of a calling song temporal pattern, avoidance of ultrasound cannot be the result of systematic errors in localizing an inherently attractive stimulus when presented at high carrier frequencies. Unlike attraction to model calling song, the ultrasound-mediated steering responses were of short latency (25-35 ms) and were produced in an open loop manner (Fig. 4), both properties of escape behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The cicada Okanagana rimosa (Say) has an acoustic communication system with three types of loud timbal sounds: (i) A calling song lasting several seconds to about 1 min which consists of a sequence of chirps at a repetition rate of 83 chirps per second. Each chirp of about 6 ms duration contains 4-5 pulses. The sound level of the calling song is 87-90 dB SPL at a distance of 15 cm. (ii) An amplitude modulated courtship song with increasing amplitude and repetition rate of chirps and pulses. (iii) A protest squawk with irregular chirp and pulse structure. The spectra of all three types are similar and show main energy peaks at 8-10 kHz. Only males sing, and calling song production is influenced by the songs of other males, resulting in an almost continuous sound in dense populations. In such populations, the calling songs overlap and the temporal structure of individual songs is obscured within the habitat. The calling song of the broadly sympatric, closely related species O. canadensis (Provander) is similar in frequency content, but distinct in the temporal pattern (24 chirps per second, 24 ms chirp duration, eight pulses per chirp) which is likely important for species separation in sympatric populations. The hearing threshold of the auditory nerve is similar for females and males of O. rimosa and most sensitive at 4-5 kHz. Experiments in the field show that female phonotaxis of O. rimosa depends on parameters of the calling song. Most females are attracted to calling song models with a 9 kHz carrier frequency (peak frequency of the calling song), but not to models with a 5 kHz carrier frequency (minimum hearing threshold). Phonotaxis depends on temporal parameters of the conspecific song, especially chirp repetition rate. Calling song production is influenced by environmental factors, and likelihood to sing increases with temperature and brightness of the sky. Correspondingly, females perform phonotaxis most often during sunny conditions with temperatures above 22 degrees C. Non-mated and mated females are attracted by the acoustic signals, and the percentage of mated females performing phonotaxis increases during the season.  相似文献   

3.
The field cricket species, Gryllus firmusand G. pennsylvanicus,occur in a mosaic hybrid zone that roughly parallels the eastern slope of the Appalachian mountains in the northeastern United States. It is important to know what role, if any, the calling song plays in mate choice in sympatric and allopatric populations. In this report, we present results on the variability of calling song properties along transects across this hybrid zone. We also present the results of experiments on phonotactic selectivity of females from an allopatric population of G. firmus.The male calling song of allopatric G. firmuswas significantly slower in temporal rhythm (i. e., chirp and pulse repetition rates) and lower in pitch (i.e., dominant frequency) than that of allopatric G. pennsylvanicus.Calling song properties of males recorded in the hybrid zone varied considerably in temporal and spectral properties. In two-stimulus (choice) phonotaxis experiments, allopatric females of G. firmuspreferred synthetic calling songs with conspecific pulse repetition rates over songs that had lower and higher pulse rates. This preference persisted even when the sound pressure levels of alternative stimuli were unequal. Therefore, allopatric females of G. firmuscan discriminate between conspecific and heterospecific calling songs. Whether or not this same selectivity is present in sympatric populations remains unclear. Investigations of phonotactic selectivity in other allopatric and sympatric populations of both species are currently under way.  相似文献   

4.
ABSTRACT. The calling and courtship songs of 17-year cicadas and of Say's cicadas differ both in the sound frequency spectrum and in temporal pattern. Multiunit recordings with hook electrodes from the whole auditory nerve show that the hearing organs are especially sensitive to transient stimuli occurring in natural sounds. Artificially produced clicks elicit bursts of spikes synchronized among various primary sensory fibres. These fibres respond to natural calling and courtship songs with a specificity dependent on carrier frequency, rhythm and transient content of the sound, following sound pulses (i.e. tymbal actions) up to repetition rates of 200 Hz. An ascending, plurisegmental interneurone was characterized by intracellular recording and simultaneously stained with cobalt. Its main arborization spatially overlaps the anterior part of the sensory auditory neuropile, and the axon was traced as far as the prothoracic ganglion. Direct input from primary auditory fibres was suggested by latency measurements. Intracellular recordings from such neurons in different species show distinct auditory input, with phasic-tonic spike responses to tones. In general, the interneurone response is more species-specific to calling than to courtship songs, and the preferential response to the conspecific calling song is based primarily upon sound frequency content.  相似文献   

5.
The female calling song (FCS) of the southern green stink bug Nezara viridula is composed of vibrational pulse trains that include either short pulses and a long pulse (FCS-1) or just short pulses (FCS-2). Their function in communication was studied by investigating male vibratory responses to natural and artificial signals on artificial and natural substrates. On a loudspeaker membrane, FCS-1 triggered in males from a Slovene and a French population significantly more courtship songs (MCrS) than FCS-2. Experiments with artificial signals showed that male responses are modulated by the duration of pulse trains and pulse repetition time. On a bean plant, males of both populations responded in the same way to the two types of female calling song pulse trains. Moreover, a laser vibrometer study of the transmission of different natural and artificial vibratory signals through the bean plant showed that the pulses of a high repetition rate are prolonged and fused at distances from the emitter. We conclude that female calling song pulse trains of different temporal structure have the same function in vibrational communication of the species. The temporal and spectral structures of the female calling songs of N. viridula are discussed in terms of effective transmission through plants.  相似文献   

6.
The information code in the temporal and spectral characteristics of the substrate-borne communication signals produced by insects has been primarily studied in insects in the suborder Auchenorrhyncha. In the present study we investigated which of the female calling song (FCS) parameters in Nezara viridula (L.) (Heteroptera, Pentatomidae) are essential for recognition by conspecific males. In playback experiments we measured male vibrational responsiveness to FCS signals varying in the durations of pulse trains and inter-pulse train intervals, repetition times, duty cycles, and dominant frequencies, and determined the preference range for each specific parameter. Males were able to distinguish songs of different temporal and frequency parameters and responded best to values characteristic of the song of conspecific females. Signal recognition is achieved on the basis of two temporal filters tuned to the durations of the pulse train and inter-pulse train interval. Males responded best to the dominant frequency characteristic of conspecific songs, which are tuned to the resonant properties of the herbaceous plants used for intraspecific signal transmission during communication.  相似文献   

7.
雌性稻绿蝽的鸣唱开始了在基质中产生的通讯并引起雄性不同的特定反应。在两种自然情况下 ,我们检验了雄性稻绿蝽对N viridula ,Thyantapallidovirens和Thyantacustatoraccerra个体鸣唱刺激反应的物种特异性水平 ,并对反应强度和同种及异种刺激性鸣唱的时间特性进行了相关分析 ,证明雄性求偶鸣唱的发送和震动源的定位是最具物种特异性的反应。然而 ,即便是在这个水平上 ,雄性稻绿蝽不能将同种雌性个体的鸣唱与T .custatoraccera的第二个雄性个体的鸣唱区分开来 ,后者与前者有相似的脉冲持续时间和重复时间值。本文也讨论了涉及交配行为鸣唱期的有关信号的物种特定性的概念  相似文献   

8.
Phonotaxis in flying crickets   总被引:1,自引:1,他引:0  
The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Male Caribbean fruit flies, Anastrepha suspensa (Loew) produce two sounds in sexual contexts, calling songs and precopulatory songs. Calling song occurs during pheromone release from territories within leks and consists of repeated bursts of sound (pulse trains). Virgin female A. suspensa became more active in the presence of recorded calling songs. Activity during the broadcast of a heterospecific song did not differ from movement during periods of silence. A conspecific song typical of smaller males, i.e. conspicuous for its long periods between pulse trains, also failed to elicit more activity by virgin females than silence. Mated females were most active during silences. Unmated males had no obvious reaction to sound. Calling songs are apparently sexually important communications which females discriminate among and may use as cues for locating and/or choosing between mates. Precopulatory song is produced by mounted males just before and during the early stages of copulation. Males that did not produce such songs remained coupled for shorter periods, perhaps passing fewer sperm. Wingless (muted) males were more likely to complete aedeagal insertion if a recorded precopulatory song was broadcast. Calling song played at the same level (90 dB) had no significant effect on the acceptance of males, nor did precopulatory song at a lower SPL (52dB). Precopulatory song may be used to display male vigour to choosing females.  相似文献   

10.
Summary In the two acridid speciesChorthippus parallelus andCh. montanus, the sound template by which females recognize male song varies with temperature, as does the song itself. At relatively high temperatures the females respond best to simulated songs with high syllable frequencies, and at lower temperatures songs with lower syllable frequencies are preferred.The temperature around the supraesophageal and metathoracic ganglia of female grasshoppers was monitored by implanted thermocouples, and either the head or the thorax was warmed selectively while the animal was free to move (within the imits of the wires). Then simulations of the conspecific song varying in syllable frequency corresponding to different song temperatures were presented, and the stridulatory responses of the animals were observed.The results were as follows. 1. Song recognition (in particular, the position of the peak of the response curve) depended on the temperature of the head. 2. The rate of stridulatory hindleg movement was determined by the temperature of the thoracic ganglia.This result provides strong evidence against the genetic coupling hypothesis.  相似文献   

11.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

12.
Summary Recordings were made from an identified auditory neuron, the omega neuron, in the cricketTeleogryllus oceanicus. Models of the conspecific calling song and of the song of another species were presented either singly or simultaneously, and the degree to which the temporal pattern of the conspecific model was encoded in the neuron's spike train was determined. When a single stimulus was presented alone, its temporal pattern was faithfully reflected by the cells's spiking activity, no matter what the azimuth of the broadcasting loudspeaker (Fig. 3). When two stimuli were presented simultaneously from opposite sides, encoding of the pattern ipsilateral to the recorded neuron was interfered with only slightly by the contralateral pattern, as long as the two loudspeakers were sufficiently separated (Figs. 2, 3, 4). When the loudspeakers were each 15° from the cricket's midline, however, the encoding of the temporal pattern of the ipsilateral song model was severely disrupted (Figs. 3, 4). Bilateral interactions are important in determining the response level of the neuron, but do not appear to contribute to the direction-selective encoding of the stimulus temporal pattern (Figs. 5, 6).Phonotactic steering movements of tethered, flying crickets were recorded under stimulus conditions similar to those used in the neurophysiological tests. Under one-stimulus conditions, crickets attempted to turn towards the conspecific model for all tested speaker locations. The heterospecific model elicited reliable steering behavior when it was broadcast from azimuths of 90° and 60°, but often failed to elicit consistent responses when the speaker was positioned closer to the cricket's midline (Figs. 7, 8A and 8B). Responses to the heterospecific pattern were smaller in amplitude than those to the conspecific song model (Figs. 7, 8B). Under two-stimulus conditions, the conspecific model was consistently preferred over the heterospecific song for all tested speaker locations in half the tested crickets. In the remaining animals, preference for the conspecific pattern was only evident for the larger loudspeaker azimuths (Figs. 7, 8C).These results demonstrate that simultaneouslypresented stimuli can be represented separately in the nervous system as a consequence of auditory directionality. It is postulated that the cricket's ability to choose between these stimuli may result from the interactions between two bilaterallypaired song recognizers, each of which may be driven primarily by sound stimuli from one side.  相似文献   

13.
Nezara viridula (L.) (Pentatomidae: Heteroptera) from Brazil, Florida, Italy and Slovenia, communicate by vibratory songs associated with long‐range calling and close‐range courting, rivalry and repelling. Each song is composed of spectrally and temporally different units. Spectrally different pulses of duration less than 300 ms are present in the male calling song. The female calling song is characterized by pulse trains composed of pulses shorter than 150 ms and pulse trains composed of a longer (> 700 ms) and shorter (< 250 ms) pulse. Shorter and longer pulses have different spectral characteristics. The male and female courtship songs are characterized by fusion of shorter (< 150 ms) pulses into a pulse train usually followed by a shorter (< 200 ms) postpulse in the case of the male courtship song. The female repelling song is a several seconds long vibration of irregular temporal structure. The short (< 400 ms) male rival song pulses are frequency modulated. The dominant frequency peaks of the songs investigated lie between 70 and 130 Hz. The dominant frequency and the microstructure of song spectra show no population specificity. The average duration varies more in calling than in courtship songs. The repetition time varies extensively in songs of different populations. Normal communication followed by copulation was observed between mates from Slovenia and Brazil and between mates from Florida and Italy. The potential role of different temporal and spectral parameters for species recognition and mate location is discussed in view of the expected distortion of the characteristic signal structure during transmission through plants.  相似文献   

14.
The genus Aerotegmina comprises a group of African canopy-dwelling, predatory bushcrickets (katydids) that is known for its inflated tegmina and the unusually loud and low-frequency calling song of its type species. Here, we describe the songs of another two species of the genus which are much larger than the type species and have an even lower peak frequency. In addition, small and large species differ in song structure. While the type species and closely related forms have a broad banded, multi-peak song with strong components in the audio and ultrasonic range, the species treated here have an extremely narrow banded, resonant song with a carrier frequency of 2 kHz. With Q-values above 100 these sounds belong to the purest songs ever recorded in Orthoptera. Besides describing songs, stridulatory organs and a new species we discuss the possible functions of the song type. A key to the species of Aerotegmina is provided.  相似文献   

15.
蚱蝉自鸣声的音色分为单音色、双音色.及三音色等.本文进一步阐明每种音色的变化及高幅值脉冲对主音色能量的影响.蚱蝉自鸣声音色的变化主要是指频谱主音色频率(MTF)的显著改变、蚱蝉单色自鸣声的MTF主要在4.1—5.8kHz的频带内变化,双音色自鸣声的主次音色频率有相互颠倒现象,MTF主要在3.6—5.4kHz之间,三音色自鸣声的MTF虽然在3.5—4.5kHz比较窄的频带内,但三个音色峰的能量十分接近显示了三种音色成分.同只蚱蝉自鸣声,在不同的鸣声段具有近似相等的最大幅值,但高幅值脉冲个数的多少不同,相应主音色能量的大小与这些脉冲个数的多少对应.  相似文献   

16.
The bushcricket Pantecphylus cerambycinus has two types of stridulatory mechanisms and acoustical signals. The elytro-elytral mechanism typical for tettigonioid bushcrickets is used to produce a narrow-band calling song (peak frequency 15 kHz). An abdomino-alary mechanism is used for disturbance stridulation. Its stridulatory file is situated on the hind edge of the abdominal tergites and consists of 50-70 parallel ridges, covering the whole width of the tergite. The broad-band sound (peak frequency 10 kHz) is produced by the contact between the file and ribs situated on the upper side of the hindwings which are folded in such a way that their upper side is directed toward the tergites. Defensive stridulation in bushcrickets is reviewed here, and its function and evolution discussed in the context of predator avoidance strategies. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Summary Phonotactic responses ofTeleogryllus oceanicus were studied with two methods. Tethered crickets were stimulated with sound while they performed stationary flight, and steering responses were indicated by abdominal movements. Walking crickets tracked a sound source while their translational movements were compensated by a spherical treadmill, and their walking direction and velocity were recorded.During both flight and walking, crickets attempted to locomote towards the sound source when a song model with 5 kHz carrier frequency was broadcast (positive phonotactic response) and away from the source when a song model with 33 kHz carrier frequency was used (negative phonotactic response) (Figs. 2, 4).One-eared crickets attempted, while flying, to steer towards the side of the remaining ear when stimulated with the 5 kHz model, and away from that side in response to the 33 kHz model (Fig. 3). While walking, one-eared crickets circled towards and away from the intact side in response to the 5 kHz and 33 kHz models, respectively (Fig. 6).Positive and negative responses differed in their temporal pattern requirements. Phonotactic responses were not elicited when a non-calling song pattern (2 pulses/s) was played with a carrier frequency appropriate for positive phonotactic responses (5 kHz), but this pattern did elicit negative responses with 33 kHz carrier frequency (Figs. 7–10). When an intermediate carrier frequency, 15 kHz, was used, the response type (positive or negative) depended on the stimulus temporal pattern; the calling song pattern elicited primarily positive responses, while the non-calling song pattern elicited negative responses (Figs. 11, 12, 14, 15). A curious phenomenon was often observed in the flight steering responses; while most responses to 15 kHz song pattern were primarily positive, they often had an initial negative component which was supplanted by the positive component of the response after approximately 2–5 s (Figs. 11, 12).In recent experiments onGryllus campestris, Thorson et al. (1982) described frequency-dependent errors in phonotactic direction (anomalous phonotaxis) and showed how such errors might arise from the frequency-dependent directional properties of the cricket's auditory apparatus. Our findings, particularly the dependence of response type on temporal pattern when 15 kHz carrier frequency was used, argue that frequency-dependent directional properties alone cannot account for positive and negative phonotaxis inT. oceanicus. Rather, these represent qualitatively different attempts to locomote towards and away from the sound source, respectively.We discuss the possibility that central integration of these opposing tendencies might contribute to anomalous phonotaxis.  相似文献   

18.
Female crickets lacking experience with phonotaxis to conspecific calling song respond to trains of continuously repeated sound pulses (trill), whereas experienced females do not. In the present study such inexperienced crickets were tested for their responsiveness to trills of pulse repetition periods from 30 to 70 ms on a Y- shaped maze. Stimulation with a repetition period of 30 ms led to unexpectedly low phonotactic and exploratory activity. Initial stimulation with trills of 30- ms repetition period drastically reduced the responsiveness of inexperienced animals to conspecific calling song and other attractive stimuli. Effects of visual stimulation on the phonotactic behavior of female crickets are demonstrated. Threatening visual stimuli changed the behavior of experienced animals to a state that resembles that of inexperienced animals. The relevance of these observations is discussed with respect to the development of the auditory pattern recognition mechanism in crickets.  相似文献   

19.
The songs of the two British warblers Locustella naevia and Acrocephalus schoenobaenus were examined by means of oscillographic recordings. Both songs are composed of pulsed elements arranged in rhythmical successions. The song of L. naevia is simple and stereotyped consisting of a succession of paired pulses with a repetition frequency of 26 Hz. The song of A. schoenobaenus contains many different phrases each consisting of a succession of identical chirps. Chirps consist of successions of pulses, the number and repetition rate of which vary from phrase to phrase.
The songs are discussed in relation to the physiology of sound production and to the way in which information is encoded into sound signals. It is proposed that pulses are produced by the syringeal muscles, whilst the rhythm, tempo and duration of chirps and phrases are controlled by the respiratory muscles. A distinction is drawn between the action of the extrinsic syringeal muscles, which may produce low frequency pulses, and the intrinsic syringeal muscles, which may produce high frequency pulses.
The codal format in both songs is shown to be highly redundant, being based on the repetition of identical units of information. This device reduces the possibility of distortion of meaning by interference from environmental noise but limits the information carrying capacity of the code. The method of pulse coding is shown to be particularly well suited to the avian auditory system which is adapted to receiving and processing rapid transient signals. This ability is in part attributable to the fine discrimination of time and amplitude changes in the cochlea.  相似文献   

20.
Summary During production of song patterns by the semi-isolated CNS of Gryllus campestris, intracellullar recordings were made in fibers of the mesothoracic ganglion, including synaptic areas of identified wing opener and closer motor neurons. The normal calling song pattern and some transitional songs toward courtship and toward aggression were generated by the CNS in the absence of any phasic sensory timing (Figs. 1, 4). Intracellular activity of the opener motor neurons was characterized by an absence of events in the interchirp interval, an EPSP underlying each burst, and an IPSP following the burst if the closer motor neurons were to be activated (Fig. 1). Intracellular activity of the closer motor neurons was characterized by an absence of events in the interchirp interval, an IPSP immediately following the onset of the opener motor neuron burst, and an EPSP after the IPSP (Figs. 2, 3). Units were found which fired in a burst during the period when both the opener and closer motor neurons were inhibited (Fig. 5). Complementary sets of units were found which displayed an oscillation of activity at the chirp rhythm but not at the pulse rhythm (Fig. 6). Gaps in the calling song were observed whose characteristics indicated that motor neuron activity was neither required for, nor effective in, resetting the chirp timing oscillator (Fig. 8). A possible model for the song generating mechanism is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号