首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous hydrogen sulfide (H2S) is hypothesized to have an important role in systemic inflammation. We investigated if endogenous H2S may be a crucial mediator in airway inflammation and airway remodeling in a rat model of asthma and if endogenous H2S may exert its anti-inflammatory effect by inhibiting inducible nitric oxide synthase (iNOS)/NO pathway. Cystathionine-γ-lyase (CSE; a H2S-synthesizing enzyme) was mainly expressed in airway and vascular smooth muscle cells in rat lung tissue. Levels of endogenous H2S was decreased in pulmonary tissue in ovalbumin (OVA)-treated rats. Exogenous administration of NaHS alleviated airway inflammation and airway remodeling: peak expiratory flow (PEF) increased, goblet cell hyperplasia and collagen deposition score decreased, with decreased total cells recovered from bronchoalveolar fluid (BALF) and influx of eosinophils and neutrophils. The H2S levels of serum and lung tissue were positively correlated with PEF and negatively correlated with the level of eosinophils and neutrophils in BALF, score of lung pathology. NaHS treatment significantly attenuated pulmonary iNOS activation in OVA-treated rats. These results suggest that the CSE/H2S pathway plays an anti-inflammatory and anti-remodeling part in asthma pathogenesis and could be a novel target in prevention and treatment of asthma.  相似文献   

2.
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1–0.3 mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1–0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo.  相似文献   

3.
The beneficial effect of garlic on cardiovascular disease is well known. However, the use of raw garlic against cardiac hypertrophy is not established. In the present study we explored whether raw garlic and its compound, diallyl disulfide (DADS) could inhibit hypertrophy through H2S and/or mitochondrial biogenesis. Cardiac hypertrophy was induced in rat by giving isoproterenol at the dose of 5 mg/kg/day subcutaneously for 14 days through alzet minipump. Aqueous garlic homogenate, DADS and NaHS (liberate H2S) were fed to third, forth and fifth group of rats for 14 days at a dose of 250 mg/kg/day, 50 mg/kg/day, 14 µM/kg/day respectively. Garlic and DADS reduced cardiac hypertrophy markers and normalized mitochondrial ETC-complex activities, mitochondrial enzyme activites and mitochondrial biogenetic and apoptotic genes expression. Garlic and DADS enhanced eNOS and p-AKT level in rat heart along with increased NRF2 protein level and Tfam gene expression. However, normalization was not observed after administration of NaHS which generates H2S in-vivo. In conclusion, garlic and DADS induces mitochondrial biogenesis and ameliorates cardiac hypertrophy via activation of eNOS-Nrf2-Tfam pathway in rats.  相似文献   

4.
Organ failure is associated with increased mortality and morbidity in patients with systemic inflammatory response syndrome. Previously, we showed that a short course of infusion of a hydrogen sulfide (H2S) donor reduced metabolism with concurrent reduction of lung injury. Here, we hypothesize that prolonged H2S infusion is more protective than a short course in endotoxemia with organ failure. Also, as H2S has both pro- and anti-inflammatory effects, we explored the effect of H2S on interleukin production.Endotoxemia was induced by an intravenous bolus injection of LPS (7.5 mg/kg) in mechanically ventilated rats. H2S donor NaHS (2 mg/kg) or vehicle (saline) was infused and organ injury was determined after either 4 or 8 h. A short course of H2S infusion was associated with reduction of lung and kidney injury. Prolonged infusion did not enhance protection. Systemically, infusion of H2S increased both the pro-inflammatory response during endotoxemia, as demonstrated by increased TNF-α levels, as well as the anti-inflammatory response, as demonstrated by increased IL-10 levels. In LPS-stimulated whole blood of healthy volunteers, co-incubation with H2S had solely anti-inflammatory effects, resulting in decreased TNF-α levels and increased IL-10 levels. Co-incubation with a neutralizing IL-10 antibody partly abrogated the decrease in TNF-α levels. In conclusion, a short course of H2S infusion reduced organ injury during endotoxemia, at least in part via upregulation of IL-10.  相似文献   

5.
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na+/H+ exchanger isoform), after the acid load induced by NH4Cl, and on the cytosolic free calcium concentration ([Ca2+]i) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15 ± 0.008 and the basal pHirr was 0.195 ± 0.012 pH units/min (number of tubules/number of tubular areas = 16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10?12 M) increases the pHirr to approximately 59% of control value, and ALDO (10?6 M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10?6 M) or BAPTA (5 × 10?5 M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca2+]i was 104 ± 3 nM (15), and ALDO (10?12 or 10?6 M) increased the basal [Ca2+]i to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca2+]i and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca2+]i that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations.  相似文献   

6.
Adipocytes express the cystathionine γ lyase (CSE)–hydrogen sulfide (H2S) system. CSE–H2S promotes adipogenesis but ameliorates adipocyte insulin resistance. We investigated the mechanism of how CSE–H2S induces these paradoxical effects. First, we confirmed that an H2S donor or CSE overexpression promoted adipocyte differentiation. Second, we found that H2S donor inhibited but CSE inhibition increased phosphodiesterase (PDE) activity. H2S replacing isobutylmethylxanthine in the differentiation program induced adipocyte differentiation in part. Inhibiting PDE activity by H2S induced peroxisome proliferator activated receptor γ (PPARγ) protein and mRNA expression. Of note, H2S directly sulfhydrated PPARγ protein. Sulfhydrated PPARγ increased its nuclear accumulation, DNA binding activity and adipogenesis gene expression, thereby increasing glucose uptake and lipid storage, which were blocked by the desulfhydration reagent DTT. H2S induced PPARγ sulfhydration, which was blocked by mutation of the C139 site of PPARγ. In mice fed a high-fat diet (HFD) for 4 weeks, the CSE inhibitor decreased but H2S donor increased adipocyte numbers. In obese mice fed an HFD for 13 weeks, H2S treatment increased PPARγ sulfhydration in adipose tissues and attenuated insulin resistance but did not increase obesity. In conclusion, CSE–H2S increased PPARγ activity by direct sulfhydration at the C139 site, thereby changing glucose into triglyceride storage in adipocytes. CSE–H2S-mediated PPARγ activation might be a new therapeutic target for diabetes associated with obesity.  相似文献   

7.
A purification process for the manufacture of a recombinant C-terminus heavy chain fragment from botulinum neurotoxin serotype C [rBoNTC(Hc)], a potential vaccine candidate, has been defined and successfully scaled-up. The rBoNTC(Hc) was produced intracellularly in Pichia pastoris X-33 using a three step fermentation process, i.e., glycerol batch phase, a glycerol fed-batch phase to achieve high cell densities, followed by a methanol induction phase. The rBoNTC(Hc) was captured from the soluble protein fraction of cell lysate using hydrophobic charge induction chromatography (HCIC; MEP HyperCel?), and then further purified using a CM 650M ion exchange chromatography step followed by a polishing step using HCIC once again. Method development at the bench scale was achieved using 5–100 mL columns and the process was performed at the pilot scale using 0.6–1.6 L columns in preparation for technology transfer to cGMP manufacturing. The process yielded approximately 2.5 g of rBoNTC(Hc)/kg wet cell weight (WCW) at the bench scale and 1.6 g rBoNTC(Hc)/kg WCW at the pilot scale. The purified rBoNTC(Hc) was stable for at least 3 months at 5 and ?80 °C as determined by reverse phase-HPLC and SDS–PAGE and was stable for 24 months at ?80 °C based on mouse potency bioassay. N-Terminal amino acid sequencing confirmed that the N-terminus of the purified rBoNTC(Hc) was intact.  相似文献   

8.
Background: We investigated the magnitude of educational differences in lung and upper aero digestive tract (UADT) cancer mortality in France from 1990 to 2007. Methods: The analyses were based on census data from a representative sample of the French population. Educational level was used as the indicator for socioeconomic status. Educational differences in mortality from lung and UADT cancer were calculated among people aged 30–74 and by birth cohort. Two periods were compared: 1990–1998 and 1999–2007. Mortality rates, hazard ratios and relative indices of inequality (RII) were computed. Results: We found higher lung and UADT cancer mortality among those with less education. Inequalities in male UADT cancer mortality remained stable over time (RII1990–1998 = 0.21 (95% confidence interval 0.15–0.29); RII1999–2007 = 0.17 (0.11–0.26)) whereas inequalities in lung cancer mortality increased among the younger men (RII1990–1998 = 0.48 (0.28–0.83); RII1999–2007 = 0.16 (0.09–0.31)). Among women, inequalities in lung cancer mortality became apparent during the second period with higher mortality among those with less education. This trend was exclusively driven by the younger women, among whom inequalities reached about the same magnitude as among younger men (RII1999–2007 = 0.21 (0.08–0.56)). Conclusion: UADT cancer mortality rates strongly decreased over time for every educational level. This implies that the burden of health associated with socioeconomic inequalities in UADT cancer mortality decreased substantially. Inequalities in lung cancer mortality are increasing among the younger generation and are expected to increase even more. Differences in magnitude of inequalities among men and women may disappear in the coming decades.  相似文献   

9.
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that plays a vital role in numerous cellular functions and has become the focus of many research endeavors, including pharmacotherapeutic manipulation. Among the challenges facing the field is the accurate measurement of biologically active H2S. We have recently reported that the typically used methylene blue method and its associated results are invalid and do not measure bona fide H2S. The complexity of analytical H2S measurement reflects the fact that hydrogen sulfide is a volatile gas and exists in the body in various forms, including a free form, an acid-labile pool, and bound as sulfane sulfur. Here we describe a new protocol to discretely measure specific H2S pools using the monobromobimane method coupled with RP-HPLC. This new protocol involves selective liberation, trapping, and derivatization of H2S. Acid-labile H2S is released by incubating the sample in an acidic solution (pH 2.6) of 100 mM phosphate buffer with 0.1 mM diethylenetriaminepentaacetic acid (DTPA), in an enclosed system to contain volatilized H2S. Volatilized H2S is then trapped in 100 mM Tris–HCl (pH 9.5, 0.1 mM DTPA) and then reacted with excess monobromobimane. In a separate aliquot, the contribution of the bound sulfane sulfur pool was measured by incubating the sample with 1 mM TCEP (tris(2-carboxyethyl)phosphine hydrochloride), a reducing agent, to reduce disulfide bonds, in 100 mM phosphate buffer (pH 2.6, 0.1 mM DTPA), and H2S measurement was performed in a manner analogous to the one described above. The acid-labile pool was determined by subtracting the free hydrogen sulfide value from the value obtained by the acid-liberation protocol. The bound sulfane sulfur pool was determined by subtracting the H2S measurement from the acid-liberation protocol alone compared to that of TCEP plus acidic conditions. In summary, our new method allows very sensitive and accurate measurement of the three primary biological pools of H2S, including free, acid-labile, and bound sulfane sulfur, in various biological specimens.  相似文献   

10.
Li X  Mao XB  Hei RY  Zhang ZB  Wen LT  Zhang PZ  Qiu JH  Qiao L 《PloS one》2011,6(10):e26728

Background

A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H2S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H2S in cochlear blood flow regulation and noise protection.

Methodology/Principal Findings

The gene and protein expression of the H2S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group.

Conclusions/Significance

Our results suggest that H2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.  相似文献   

11.
Hydrogen sulfide (H2S) plays an important role in human physiology, exerting vasodilatory, neuromodulatory and anti-inflammatory effects. H2S has been implicated in the mechanism of gastrointestinal integrity but whether this gaseous mediator can affect hemorrhagic lesions induced by stress has been little elucidated. We studied the effect of the H2S precursor L-cysteine, H2S-donor NaHS, the H2S synthesizing enzyme (CSE) activity inhibitor- D,L-propargylglycine (PAG) and the gastric H2S production by CSE/CBS/3-MST activity in water immersion and restraint stress (WRS) ulcerogenesis and the accompanying changes in gastric blood flow (GBF). The role of endogenous prostaglandins (PGs) and sensory afferent nerves releasing calcitonin gene-related peptide (CGRP) in the mechanism of gastroprotection induced by H2S was examined in capsaicin-denervated rats and those pretreated with capsazepine to inhibit activity of vanilloid receptors (VR-1). Rats were pretreated with vehicle, NaHS, the donor of H2S and or L-cysteine, the H2S precursor, with or without the concurrent treatment with 1) nonselective (indomethacin) and selective cyclooxygenase (COX)-1 (SC-560) or COX-2 (rofecoxib) inhibitors. The expression of mRNA and protein for COX-1 and COX-2 were analyzed in gastric mucosa pretreated with NaHS with or without PAG. Both NaHS and L-cysteine dose-dependently attenuated severity of WRS-induced gastric lesions and significantly increased GBF. These effects were significantly reduced by pretreatment with PAG and capsaicin denervation. NaHS increased gastric H2S production via CSE/CBS but not 3-MST activity. Inhibition of COX-1 and COX-2 activity significantly diminished NaHS- and L-cysteine-induced protection and hyperemia. NaHS increased expression of COX-1, COX-2 mRNAs and proteins and raised CGRP mRNA expression. These effects of NaHS on COX-1 and COX-2 protein contents were reversed by PAG and capsaicin denervation. We conclude that H2S exerts gastroprotection against WRS-induced gastric lesions by the mechanism involving enhancement in gastric microcirculation mediated by endogenous PGs, sensory afferent nerves releasing CGRP and the activation of VR-1 receptors.  相似文献   

12.

Background

Hydrogen sulfide (H2S) is a potent vasodilator. However, the complex mechanisms of vasoregulation by H2S are not fully understood. We tested the hypotheses that (1) H2S exerts vasodilatory effects by opening KCNQ-type voltage-dependent (Kv) K+ channels and (2) that H2S-producing cystathionine-γ-lyase (CSE) in perivascular adipose tissue plays a major role in this pathway.

Methodology/Principal Findings

Wire myography of rat and mouse aortas was used. NaHS and 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADTOH) were used as H2S donors. KCNQ-type Kv channels were blocked by XE991. 4-Propargylglycine (PPG) and ß-cyano-l-alanine (BCA), or 2-(aminooxy)-acetic acid (AOAA) were used as inhibitors of CSE or cystathionine-ß-synthase (CBS), respectively. NaHS and ADTOH produced strong vasorelaxation in rat and mouse aortas, which were abolished by KCNQ channel inhibition with XE991. Perivascular adipose tissue (PVAT) exerted an anticontractile effect in these arteries. CSE inhibition by PPG and BCA reduced this effect in aortas from rats but not from mice. CBS inhibition with AOAA did not inhibit the anticontractile effects of PVAT. XE991, however, almost completely suppressed the anticontractile effects of PVAT in both species. Exogenous l-cysteine, substrate for the endogenous production of H2S, induced vasorelaxation only at concentrations >5 mmol/l, an effect unchanged by CSE inhibition.

Conclusions/Signficance

Our results demonstrate potent vasorelaxant effects of H2S donors in large arteries of both rats and mice, in which XE991-sensitive KCNQ-type channel opening play a pivotal role. CSE-H2S seems to modulate the effect of adipocyte-derived relaxing factor in rat but not in mouse aorta. The present study provides novel insight into the interaction of CSE-H2S and perivascular adipose tissue. Furthermore, with additional technical advances, a future clinical approach targeting vascular H2S/KCNQ pathways to influence states of vascular dysfunction may be possible.  相似文献   

13.
The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6 × 250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media.  相似文献   

14.
Hwang I  Yoon T  Kim C  Cho B  Lee S  Song MK 《Life sciences》2011,88(5-6):278-284
AimsThis study was to determine the effects of zinc plus arachidonic acid (ZA) treatment on the insulin action in the specific ZA target organs using hyperinsulinemic euglycemic clamp method.Main methods18 Sprague–Dawley rats weighing ~ 130 g were divided into 3 groups of 6 rats and treated them with 1) normal rat chow, 2) high fructose (60.0%) diet only, or 3) the same fructose diet plus drinking water containing 10 mg zinc plus 50 mg arachidonic acid (AA)/L. In a separate study, male Wistar rats weighing ~ 250 g were fed normal rat chow (n = 4) or high fat (66.5%) diet with drinking water containing zero (n = 9) or 10 mg AA plus 20 mg zinc /L (n = 9). After 4 week treatment, insulin action was assessed using the hyperinsulinemic eguglycemic clamp technique.Key findingsHigh fructose feeding impaired suppression of hepatic glucose output by insulin compared to controls during the clamp procedure (4.39 vs. 2.35 mg/kg/min; p < 0.05). However, ZA treatment in high fructose-fed rats showed a significant improvement of hepatic insulin sensitivity compared to non-treatment controls (4.39 vs. 2.18 mg/kg/min; p < 0.05). Glucose infusion rates in Wistar rats maintained on a high fat diet (HFD) were significantly lower compared to control rats (22.8 ± 1.3 vs. 31.9 ± 1.4 mg/kg/min; p < 0.05). ZA treatment significantly improved (~ 43%) peripheral tissue insulin sensitivity in HFD fed animals (26.7 ± 1.3 [n = 9] vs. 22.8 ± 1.3 mg/kg/min; p < 0.05).SignificanceThese data demonstrate that ZA treatment is effective in improving glucose utilization in hyperglycemic rats receiving either a high-fructose or a high-fat diet.  相似文献   

15.
This study was designed to investigate the possible effect of sitagliptin on renal damage induced by renal ischemia reperfusion (I/R) in diabetic rats. T2DM in rats was induced by the administration of nicotinamide (230 mg/kg, i.p.), 15 min prior to a single dose of streptozotocin (65 mg/kg, i.v.). In vivo renal I/R was performed in both T2DM and normal rats. Each protocol comprised ischemia for 30 min followed by reperfusion for 24 h and a treatment period of 14 days before induction of ischemia. Sitagliptin treated diabetic rats that underwent renal I/R demonstrated significant decrease in the serum concentrations of aspartate aminotransferase (p < 0.01), urea nitrogen (p < 0.01) and creatinine (p < 0.001) compared to renal I/R in diabetic rats. Lipid peroxidation, xanthine oxidase activity, myeloperoxidase activity and nitric oxide level in renal tissue were significantly (p < 0.05, p < 0.001, p < 0.01, p < 0.05 respectively) decreased after renal I/R in sitagliptin treated rats compared to diabetic rats. Antioxidant enzymes like glutathione (p < 0.05), glutathione peroxidase (p < 0.001), superoxide dismutase (p < 0.05) and catalase (p < 0.001) were significantly increased after renal I/R in sitagliptin treated diabetic rats compared to non treated diabetic rats. The typical DNA laddering was observed when renal I/R performed in diabetic rats, which indicates cell apoptosis. Sitagliptin treated rats demonstrated a decrease in DNA fragmentation and apoptosis. Furthermore, renal histopathology preserved in sitagliptin treated rats verified protection against renal I/R in diabetes. The results of present investigation established sitagliptin treatment attenuated renal damage induced by renal I/R in diabetic rats.  相似文献   

16.
Aroutcheva A  Ling Z  Faro S 《Anaerobe》2008,14(5):256-260
ObjectivesTo compare vaginal lipopolysaccharides (LPS) concentrations between patients with and without bacterial vaginosis (BV), to evaluate the correlation between Prevotella bivia colonization density and LPS concentration, and to determine the impact of LPS on loss of dopamine neurons (DA).MethodsVaginal washes obtained from patients with (n = 43) and without (n = 59) BV were tested for quantity of P. bivia cells using quantitative PCR and for concentrations of LPS using the Limulus Amebocyte Lysate gel clot method. Prevotella bivia, Gardnerella vaginalis and Escherichia coli sonicated cell extracts were also tested for LPS production. DA neuron cells obtained from embryonic day (E) 14.5 pregnant rats were exposed to fluid from eight vaginal washes; tyrosine hydrolase immunoreactive staining was applied for visualization and cell counts.ResultsThe median LPS concentrations were dramatically higher among patients who had symptoms of BV compared to those who did not have symptoms (3235.0 vs 46.4 EU/ml, respectively, P < 0.001); patients who had BV also had much higher colonization densities of P. bivia (0.06 ± 0.36 vs 5.4 ± 2.2 log10 CFU/ml, respectively, P < 0.001).Prevotella bivia cell lysates resulted in a higher LPS concentration (10,713.0 ± 306.6 EU/ml) than either E. coli (4679.0 ± 585.3 EU/ml) or G. vaginalis (0.07 ± 0.01 EU/ml of LPS).The loss of DA neuron was 20–27% in cultures treated with vaginal washes from BV-negative patients and 58–97% in cultures treated with vaginal washes from patients with BV.ConclusionP. bivia produces high LPS concentration, which may create a toxic vaginal environment that damages DA neurons.  相似文献   

17.
A series of symmetric and asymmetric spermine (SPM) conjugates with all-trans-retinoic acid (ATRA), acitretin (ACI), (E)-3-(trioxsalen-4′-yl)acrylic acid (TRAA) and l-DOPA, amides of ACI, l-DOPA and TRAA with 1-aminobutane, benzylamine, dopamine and 1,12-diaminobutane as well as hybrid conjugates of O,O′-dimethylcaffeic acid (DMCA) with TRAA or N-fumaroyl-indole-3-carboxanilide (FICA) and 2-(2-aminoethoxy)ethanol were synthesized and their antioxidant properties were studied. The reducing activity (RA)% of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay and found to be in the range 0–92(20 min)%/96(60 min)% at 100 μM, the most powerful being the conjugates l-DOPA-SPM-l-DOPA (8, RA = 89%/96%) and l-DOPA-dopamine (13, RA = 92%/92%). Conjugate DMCA-NH(CH2CH2O)2-FICA (14) was the most powerful LOX inhibitor with IC50 33.5 μM, followed by the conjugates ACI-NHCH2Ph (10, IC50 40.5 μM), ACI-SPM-TRAA (7, IC50 41.5 μM), DMCA-NH(CH2CH2O)2-TRAA (15, IC50 65 μM), 13 (IC50 81.5 μM) and ACI-dopamine (11, IC50 87 μM). The most potent inhibitors of lipid peroxidation at 100 μM were the conjugates 15 (98%) and ACI-SPM-ACI (4, 97%) whereas all other compounds showed activities comparable or lower than trolox. The most interesting compounds, namely ATRA-SPM-ATRA (3), 4, 10, 11 and 15, as well as unconjugated compounds such as ATRA and dopamine, were studied for their anti-inflammatory activity in vivo on rat paw oedema induced by Carrageenan and found to exhibit, for doses of 0.01 mmol/mL of conjugates per Kg of rat body weight, weaker anti-inflammatory activities (3.6–40%) than indomethacin (47%) with conjugate 3 being the most potent (40%) in this series of compounds. The cytocompatibility of selected compounds was evaluated by the viability of RAMEC cells in the presence of different concentrations (0.5–50 μM) of the compounds. Conjugates 3 (IC50 2.6 μM) and 4 (IC50 4.7 μM) were more cytotoxic than the corresponding unconjugated retinoids ATRA (IC50 18.3 μM) and ACI (IC50 14.6 μM), whereas conjugate 15 (IC50 12.9 μM) was less cytotoxic than either DCSP (IC50 11.3 μM) or the tert-butyl ester of TRAA (IC50 2.9 μM).  相似文献   

18.
Maurya AN  Deshpande SB 《Life sciences》2011,88(19-20):886-891
AimsThe present study was undertaken to evaluate the role of nitric oxide (NO) in Mesobuthus tamulus (MBT) venom-induced depression of spinal reflexes.Main methodsExperiments were performed on isolated hemisected spinal cords from 4 to 6 day old rats. Stimulation of a dorsal root with supramaximal strength evoked monosynaptic (MSR) and polysynaptic reflex (PSR) potentials in the corresponding segmental ventral root.Key findingsSuperfusion of MBT venom (0.3 μg/ml) depressed the spinal reflexes in a time-dependent manner and the maximum depression was seen at 10 min (MSR by 63%; PSR by 79%). The time to produce 50% depression (T-50) of MSR and PSR was 7.7 ± 1.3 and 5.7 ± 0.5 min, respectively. Pretreatment with bicuculline (1 μM; GABAA receptor antagonist) or strychnine (1 μM; glycineA receptor antagonist) did not block the venom-induced depression of spinal reflexes. However, Nω-nitro-L-arginine methyl ester (L-NAME, 100 or 300 μM; NO synthase inhibitor) or hemoglobin (Hb, 100 μM; NO scavenger) antagonized the venom-induced depression of MSR. Further, soluble guanylyl cylase inhibitors (1 H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, ODQ; 1 μM or methylene blue, 100 μM) also antagonized the venom-induced depression of MSR but not PSR. Nitrite concentration (indicator of NO activity) of the cords exposed to venom (0.3 μg/ml) was not different from the control group.SignificanceThe results indicate that venom-induced depression of MSR is mediated via NO-guanylyl cyclase pathway without involving GABAergic or glycinergic system.  相似文献   

19.
AimsCardiac function is modulated by the sympathetic nervous system through β-adrenergic receptor (β-AR) activity and this represents the main regulatory mechanism for cardiac performance. To date, however, the metabolic and molecular responses to β2-agonists are not well characterized. Therefore, we studied the inotropic effect and signaling response to selective β2-AR activation by tulobuterol.Main methodsStrips of rat right ventricle were electrically stimulated (1 Hz) in standard Tyrode solution (95% O2, 5% CO2) in the presence of the β1-antagonist CGP-20712A (1 μM). A cumulative dose–response curve for tulobuterol (0.1–10 μM), in the presence or absence of the phosphodiesterase (PDE) inhibitor IBMX (30 μM), or 10 min incubation (1 μM) with the β2-agonist tulobuterol was performed.Key findingsβ2-AR stimulation induced a positive inotropic effect (maximal effect = 33 ± 3.3%) and a decrease in the time required for half relaxation (from 45 ± 0.6 to 31 ± 1.8 ms, ? 30%, p < 0.001) after the inhibition of PDEs. After 10 min of β2-AR stimulation, p-AMPKαT172 (54%), p-PKBT308 (38%), p-AS160T642 (46%) and p-CREBS133 (63%) increased, without any change in p-PKAT197.SignificanceThese results suggest that the regulation of ventricular contractility is not the primary function of the β2-AR. Rather, β2-AR could function to activate PKB and AMPK signaling, thereby modulating muscle mass and energetic metabolism of rat ventricular muscle.  相似文献   

20.
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes resulting in skin inflammation, photoaging, and photocarcinogenesis. The flavonoid luteolin is one of the most potent antioxidative plant polyphenols. We investigated the UV protective and antioxidant properties of luteolin in human keratinocytes in vitro, ex vivo, and in vivo. Spectrophotometric measurements revealed extinction maxima of luteolin in the UVB and UVA range. UV transmission below 370 nm was < 10%. In human skin, luteolin effectively reduced the formation of UVB-induced cyclobutane pyrimidine dimers. The free radical scavenging activity of luteolin was assessed in various cell-free and cell-based assays. In the cell-free DPPH assay the half-maximal effective concentration (EC50) of luteolin (12 μg/ml) was comparable to those of Trolox (25 μg/ml) and N-acetylcysteine (32 μg/ml). In contrast, in the H2DCFDA assay performed with UVB-irradiated keratinocytes, luteolin (EC50 3 μg/ml) was much more effective compared to Trolox (EC50 12 μg/ml) and N-acetylcysteine (EC50 847 μg/ml). Luteolin also inhibited both UVB-induced skin erythema and the upregulation of cyclooxygenase-2 and prostaglandin E2 production in human skin via interference with the MAPK pathway. These data suggest that luteolin may protect human skin from UVB-induced damage by a combination of UV-absorbing, DNA-protective, antioxidant, and anti-inflammatory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号