首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Superovulated rat ovary slices from rats treated with 20μg. of luteininzing hormone/100g. body wt. 2hr. before death and from control animals have been incubated in vitro. Output of Δ4-3-oxo steroids (0·2μmole/g. wet wt./hr. in control tissue) was linear for 4hr., and was increased by approx. 70% in slices from luteinizing hormone-treated rats. Rate of oxygen consumption (90·0±4·6μmoles/g. wet wt./hr.) was linear for 3hr. and unaltered by luteinizing hormone treatment or addition of glucose (1mg./ml.) to the medium. 2. In slices from control animals, steady-state rate of glucose uptake was 78·0±2·9μg. atoms of carbon/g. wet wt./hr.; steady-state rates of lactate output, pyruvate output and incorporation of [U-14C]-glucose carbon atoms into carbon dioxide and total lipid extract were 60·7±0·9, 2·4±0·1, 18·0±1·1 and 0·7±0·1μg. atom of carbon/g. wet wt./hr. and accounted for 104·5±1·9% of the glucose uptake. In slices from luteinizing hormone-treated rats, glucose uptake and outputs of lactate, pyruvate and [14C]carbon dioxide were increased by approx. 25%, and 108·4±3·2% of the glucose uptake could be accounted for. 3. The total lipid extract was separated by thin-layer chromatography and saponification. Of the 14C incorporated into this fraction during incubation with [U-14C]glucose 97% was found in the fractions containing glyceride glycerol and less than 3% in the fractions containing sterols, steroids or fatty acids. Appreciable quantities of 14C were incorporated into these lipid fractions from [1-14C]acetate. 4. From a consideration of the tissue glycogen content, the specific activities of [14C]lactate and glucose 6-phosphate (C-1) derived from [1-14C]-, [6-14C]- and [U-14C]-glucose, and the ratio of [14C]carbon dioxide yields from [1-14C]glucose and [6-14C]glucose, it was concluded that there was no appreciable glycogenolysis or flow through the pentose phosphate cycle. 5. In ovary slices from both control and luteinizing hormone-treated animals, glucose in vitro raised the incorporation rate of 14C from [1-14C]acetate into sterols and steroids. Luteinizing hormone in vivo stimulated the incorporation rate in vitro but only in the presence of glucose. 6. In slices incubated in medium containing [3H]water, [14C]sorbitol and glucose (1mg./ml.), the total water space (865±7·1μl./g.) and the extracellular water space (581±22μl./g.) were unchanged by luteinizing hormone treatment in vivo but the glucose space was raised from 540±23·6μl./g. to 639±31·3μl./g. 7. Luteinizing hormone treatment was found to lower the tissue concentration of the hexose monophosphates and to increase the total activity of hexokinase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and possibly of phosphofructokinase. 8. The kinetic properties of a partially purified preparation of phosphofructokinase were found to be qualitatively similar to those from other mammalian tissues. 9. The results are discussed with reference to both the role of glucose metabolism in steroidogenesis and the mechanism by which luteinizing hormone increases the rate of glucose uptake.  相似文献   

2.
1. Rates of entry and oxidation of a range of metabolites have been measured in tracheostomized sheep (diet, 800g. of lucerne chaff and 100g. of maize/day) by combining isotope-dilution techniques with the continuous measurement of total respiratory gas exchange, and 14CO2 production during the intravenous or intraruminal infusion of 14C-labelled substrates. 2. Mean entry rates in fed and starved (24hr.) sheep respectively, expressed as mg./min./kg. body wt.0·75, were: glucose, 5·0 (range 4·8–5·1, 2 observations) and 3·8 (3·2–4·2, 4); acetate, 10·8 (9·1–13·5, 4) and 5·8 (1); d(−)-β-hydroxybutyrate, 1·4 (1) and 1·5 (0·8–2·4, 4); palmitate, oleate and stearate (starved sheep only) 1·0 (0·6–1·9, 7), 0·9 (0·2–1·6, 10) and 0·9 (0·5–1·1, 11) respectively. 3. Production rates of propionate and butyrate in continuously feeding sheep were 6·4 (4·7–8·3, 4) and 4·3 (3·4–6·1, 4) mg./min./kg.0·75 respectively, and in starved (24hr.) sheep were 2·5 (2·2–2·9, 2) and 1·0 (0·8–1·2, 2) mg./min./kg.0·75 respectively. 4. Calculated terminal values for the specific radioactivity of respiratory 14CO2 during measurements of entry rates and production rates were used to calculate the contributions of individual substrates to overall oxidative metabolism. Mean values for fed and starved sheep respectively were: glucose, 9·1 (8·6–9·6, 2) and 11·2 (5·9–15·1, 4)%; acetate, 31·6 (26·8–38·1, 4) and 22·1 (1)%; d(−)-β-hydroxybutyrate, 10·4 (1) and 4·8 (1·9–7·7, 4)%; propionate, 23·0 (13·8–29·9, 4) and 7·1 (6·8–7·4, 2)%; butyrate, 16·5 (13·7–20·5, 4) and 5·3 (5·2–5·3, 2)%; palmitate, oleate and stearate (starved sheep only), 4·7 (2·0–7·7, 7), 4·0 (1·2–6·6, 10) and 4·4 (3·8–5·8, 9)% respectively. The sum of these values for individual substrates in fed and starved sheep, excluding that of β-hydroxybutyrate and after correction of the glucose value for the known interrelations of this substrate with propionate, accounted for 76% and 58% respectively of total production of carbon dioxide. 5. Calculations based on the proportion of substrate entry directly oxidized indicated that the substrates studied accounted for 63% (fed sheep) and 43% (starved sheep) of total energy expenditure measured by oxygen uptake. The contribution of β-hydroxybutyrate was excluded, and corrections were made for glucose–propionate interrelations, and for the different rates of oxidation of the methyl and carboxyl fragments of acetate. 6. The present results have been combined with those obtained earlier in this Laboratory to examine the relationships between rates of substrate entry and oxidation, and concentrations of substrate in blood. Rates of entry of acetate, glucose, d(−)-β-hydroxybutyrate, palmitate and oleate (but not stearate) were well correlated with concentration in blood, and substrate contribution to production of carbon dioxide showed a similar correlation to blood concentration, except with glucose. 7. It was concluded that the general technique is of potential value in providing valid quantitative parameters of animal metabolism.  相似文献   

3.
1. The "chloride space" in frog skin was determined and found to be 69.7 per cent by weight of wet skin. The chloride space occupies about 94 per cent of the total water space of skin. From this and other information, it appears that the "non-chloride space" measures only a part of the space occupied by the structural elements of skin. This space is referred to here as the intracellular compartment and the remainder as the extracellular compartment of frog skin. On this basis, potassium and sodium in skin are distributed as follows: total sodium, 60 to 75 µeq./gm. of wet skin; all sodium is probably extracellular; total potassium, 39 to 49 µeq./gm.; intracellular potassium, 37 to 47 µeq./gm. 2. Skins were immersed in solutions differing from each other in their sodium and potassium concentrations. Three levels of NaCl were studied: 48, 119, and 169 µeq./ml. For each of these solutions (referred to below as diluted, physiological, and concentrated saline), the potassium levels were varied from 0.1 to 20 µeq./ml. For skins in solutions low in potassium and high in sodium, it was found that an exchange of intracellular potassium against extracellular sodium occurs. The ratio for the number of potassium ions lost/number of sodium ions gained was 4:1,4:6, and 4:8 for skin in K+-free diluted, physiological, and concentrated saline, respectively. 3. Uptake of NaCl by the epithelium of frog skin is dependent on the potassium concentration of the environment. For skins in physiological saline, net uptake of NaCl was optimal (0.90 µeq. x cm.–2 x hr.–1) at 1 to 5 µeq. K+/ml. For skins in diluted and concentrated saline optimal NaCl uptake was seen at potassium concentrations of approximately 5 and 10 µeq. K+/ml., respectively. Net uptake of NaCl by the skin is also discussed, with relation to the potassium balance of skin. 4. Skin potentials decreased with increasing extracellular potassium concentration when diluted saline solutions were used. The opposite of this was found for skins in concentrated saline. For skins in physiological saline, skin potentials rose sharply from rather low values, when placed in solutions very low in potassium, to relatively high values, when immersed in solutions containing 1 to 5 µeq. K+/ml. Further increase in potassium concentration of the bath led to slight reductions in skin potentials. The highest potentials observed were of the order of 40 mv. In all cases studied, the inside was positive with relation to the outside. 5. It can be shown that values for intracellular potassium concentration as a function of extracellular potassium concentration satisfy, at a first but good approximation, Freundlich's isotherm. A modification of Freundlich's isotherm, recently introduced by Sips, may also be used to correlate the experimental data quantitatively. Since the latter isotherm has a rational interpretation, it is suggested that this be used, rather than Freundlich's isotherm, to express quantitatively the dependence of intracellular on extracellular potassium in frog skin.  相似文献   

4.
Kinetics of thiamin cleavage by sulphite   总被引:2,自引:0,他引:2       下载免费PDF全文
Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.  相似文献   

5.
The distribution of cholinesterase (Ch-esterase) in isolated myelinated fibers of the frog has been investigated. Quantitative microgasometric measurements have confirmed the previous histochemical observations. Both approaches indicate that in frog nerve fibers acetylcholinesterase (ACh-esterase) is the only or the predominant enzyme when selective inhibitors and different substrates are used: acetylcholine (ACh), butyrylcholine, and acetyl-B-methylcholine (Mecholyl). By means of the microgasometric technique, a significant difference in ACh-esterase activity between axons isolated from ventral (37.2 ± 1.7 µmole x 10-5 ACh/mm2/hr) and dorsal roots (2.0 ± 0.9 µmole x 10-5 ACh/mm2/hr) was found. In the region of the node of Ranvier the enzyme activity (50.4 ± 4.4 µmole x 10-5 ACh/mm2/hr) appears to be considerably higher than in the internodal area (36.6 ± 2.1 µmole x 10-5 ACh/mm2/hr). The findings are discussed in relation to the theory of saltatory conduction and the ACh system.  相似文献   

6.
1. A group of normal and congenitally goitrous Merino sheep were investigated to identify the metabolic defect present in the abnormal animals. 2. Protein-bound iodine concentrations of serum from goitrous animals (average 5·7μg./100ml.) were higher than normal (average 4·2μg./100ml.; P 0·001), but the hormonal iodine measured as butanol-extractable 131I was low in the serum of goitrous (average 40·3% of protein-bound 131I) compared with that of normal (84·2%; P 0·02) sheep. The non-hormonal iodine of the serum of goitrous sheep appeared to include iodotyrosines and iodinated protein. 3. Starch-gel-electrophoretic separations of sera from normal and goitrous sheep after 131I injection (100–500μc) showed no qualitative differences in the radioactivity of protein components. No significant differences in thyroxine-binding in vitro by serum proteins of normal and goitrous sheep were observed. 4. The clearance rates of 131I-labelled iodotyrosines (t½ 1·2–2·9hr.) and iodothyronines (t½ 33·5–47·4hr.) were similar in normal and goitrous sheep. 5. The concentration of circulating thyroid-stimulating hormone was significantly higher (P<0·01 in three sheep, P<0·05 in one sheep) in goitrous sheep. 6. The congenital goitre appears to be due to compensatory hypertrophy of the gland resulting from an inability to synthesize an adequate supply of thyroid hormone.  相似文献   

7.
1. The rate and stability to aging of the metabolism of propionate by sheep-liver slices and sucrose homogenates were examined. Aging for up to 20min. at 37° in the absence of added substrate had little effect with slices, whole homogenates or homogenates without the nuclear fraction. 2. Metabolism of propionate by sucrose homogenates was confined to the mitochondrial fraction, but the mitochondrial supernatant (microsomes plus cell sap) stimulated propionate removal. 3. The rate of propionate metabolism by liver slices was higher in a high potassium phosphate–bicarbonate medium [0·88(±s.e.m. 0·16)μmole/mg. of N/hr.] than in Krebs–Ringer bicarbonate medium [0·44(±s.e.m. 0·13)μmole/mg. of N/hr.]. 4. Metabolism of propionate by sucrose homogenates freed from nuclei was dependent on the presence of oxygen, carbon dioxide and ATP. Propionate removal was stimulated 250% by Mg2+ ions and 670% by cytochrome c. 5. In the complete medium 2·39(±s.e.m. 0·15)μmoles of propionate were consumed/mg. of N/hr. 6. The ratio of oxygen consumption to propionate utilization was sufficient to account for the complete oxidation of half the propionate consumed. 7. The only products detected under these conditions were succinate, fumarate and malate. Propionate had no effect on the production of lactate from endogenous sources and did not itself give rise to lactate. 8. Methylmalonate did not accumulate when propionate was metabolized and was not oxidized. It was detected as an intermediate in the conversion of propionyl-CoA into succinate. The rate of this reaction sequence was adequate to account for the rate of propionate metabolism by sucrose homogenates or slices, provided that the rate of formation of propionyl-CoA was not limiting. 9. The methylmalonate pathway was predominantly a mitochondrial function. 10. The metabolism of propionate appeared to be dependent on active oxidative phosphorylation.  相似文献   

8.
1. Young mice were maintained on a basal diet composed of meat, which is poor in both manganese and calcium. 2. The addition of small amounts (2·5–5·0mg./kg. of meat) of manganese improved weight gain and calcification of bone and decreased incorporation of injected radiocalcium into bone. 3. Prolonged treatment with larger amounts (10·0–25·0mg./kg. of meat) of manganese depressed growth, induced defective calcification of bone and increased incorporation of radiocalcium into bone.  相似文献   

9.
1. The tissue contents of hexose monophosphate, N-acetylglucosamine 6-phosphate, UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-glucuronic acid were determined in the skin of young rats less than 1 day post partum. Tissue-space determinations were used to calculate their average cellular concentrations. 2. The incorporation of [U-14C]-glucose into the intermediates was recorded with time and their rates of turnover were calculated. The results demonstrated product–precursor relationships along the pathway of hexosamine synthesis and that of hexuronic acid synthesis. The rates of synthesis of UDP-N-acetylhexosamine and UDP-glucuronic acid were 1·5±0·3 and 0·24±0·03mμmoles/min./g. of tissue respectively. These results indicated the average turnover time of the total tissue glycosaminoglycans to be about 5 days.  相似文献   

10.
1. A spectrophotofluorimetric method for the determination of glyoxylic acid in biological materials is described. 2. The method is based on the reaction between glyoxylic acid and resorcinol in acid solution, a fluorescent complex being obtained on the subsequent addition of alkali. 3. The reaction was found to be sensitive and highly specific, the minimum detectable amount of glyoxylic acid being 1·35×10−8 mole. 4. The urinary excretion of glyoxylic acid by ten normal adults ranged from 1·4 to 4·7mg./24hr. Small but measurable amounts of glyoxylic acid were found in cell-free extracts of Pseudomonas oxalaticus OX1 grown on oxalic acid as a source of carbon. No glyoxylic acid was detected in human serum.  相似文献   

11.
An enzymatic ion exchange model for active sodium transport   总被引:2,自引:1,他引:1       下载免费PDF全文
An enzymatic ion exchange model for active sodium transport is described. Kinetic equations relating net flux to time, and to concentration difference across the actively transporting membrane are derived. The second of these equations is tested, using the isolated frog skin in the "short-circuit" apparatus of Ussing. Reasonable linearity, as predicted by this equation, is observed. The passive permeability coefficient for Na+, is calculated as 5.3 x 10-4 ± 5.3 x 10-4 cm./hr. If cholinesterase is assumed to be the enzyme responsible for transport, the activity required to account for the observations reported here is 17.7 x 10-4 mmoles/cm.2/hr.  相似文献   

12.
Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535) from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.  相似文献   

13.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

14.
1. Unchanged Ionox 330 is quantitatively eliminated in the faeces of dogs, rats and man after oral administration, and 14C is absent from the urine and expired gases of rats intubated with [14C]Ionox 330. Dogs and rats do not show a sex difference in this pattern of elimination. 2. Quantitative elimination of [14C]Ionox 330 and the absence of 14C in the carcass and viscera of rats 72hr. after dosage show that this substance does not accumulate in the body. 3. No metabolites are formed in consequence of the ingestion of Ionox 330. 4. Rats eliminate three-quarters or more of a dose (285·7mg./kg. body wt.) of Ionox 330 in 24hr. and the remainder during 24–48hr., and dogs eliminate the whole dose (90mg./kg. body wt.) within 48hr. and a variable proportion within 24hr. These rates of elimination are consistent with the passage of unabsorbed material through the alimentary canal. 5. After removal of the alimentary canal, radioactivity is absent from the carcass and remaining viscera of rats 8, 16 and 24hr. after ingestion of [14C]Ionox 330, and this strongly suggests the absence of alimentary absorption. 6. The absence of 14C in the 24hr. bile of animals with biliary fistulae establishes that [14C]Ionox 330 is not absorbed from the gastro-intestinal tract.  相似文献   

15.
The metabolism of [2-14C]indole in the rat   总被引:3,自引:1,他引:2  
1. [2-14C]Indole has been synthesized from [14C]formate and o-toluidine via N[14C]-formyltoluidine. 2. When fed to rats, the 14C of [14C]indole (dose 70–80mg./kg. body wt.) is fairly rapidly excreted, and in 2 days an average of 81% appears in the urine, 11% in the faeces and 2·4% as carbon dioxide in the expired air. 3. Radioactivity is excreted in the urine as indoxyl sulphate (50% of the dose), indoxyl glucuronide (11%), oxindole (1·4%), isatin (5·8%), 5-hydroxyoxindole conjugates (3·1%), N-formylanthranilic acid (0·5%) and unchanged indole (0·07%). The faeces contain indoxyl sulphate (0·4% of the dose) and indole (0·2%), but the major metabolites have not been identified. 4. Fed to rats with biliary cannulae an average of 5·6% of a dose of [14C]indole (20–60mg./kg. body wt.) is excreted in the bile in 2 days. Radioactivity is present as indoxyl sulphate (0·8% dose) and 5-hydroxyoxindole conjugates (0·6%). 5. Rats further metabolize indoxyl into N-formylanthranilic acid and anthranilic acid, and oxindole into 5-hydroxyoxindole. 6. With rat-liver microsomes plus supernatant under aerobic conditions, indole gives indoxyl, oxindole, possibly isatin, N-formylanthranilic acid and anthranilic acid, but under anaerobic conditions gives only oxindole. Similarly, under aerobic conditions, oxindole gives 5-hydroxyoxindole, anthranilic acid and o-aminophenylacetic acid. 7. Indole is metabolized by two pathways, one via indoxyl to isatin, N-formylanthranilic acid and anthranilic acid, and the other via oxindole to 5-hydroxyoxindole and possibly to o-aminophenylacetic and anthranilic acid. 8. The following new compounds are described: 4-hydroxy-2-nitrophenylacetic acid, 3-, 4- and 5-benzyloxy-2-nitrophenylacetic acid, 5- and 7-hydroxyoxindole and 5-aminoacridine indoxyl sulphate.  相似文献   

16.
Graphene, a two-dimensional carbon sheet with single-atom thickness, have attracted the scientific world for its potential applications in various field including the biomedical areas. In the present study the graphene copper nanocomposite (GCNC) was synthesized, characterized and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. The synthesized GCNC was analyzed by X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), atomic force microscopy (AFM), and fourier transform infrared spectroscopy (FTIR). The GCNC in 0.1% DMSO was sonicated for 10 min and the final concentration of 0.033, 0.099, 0.199 and 3.996 µg/µl of diet were established. The third instar larvae were allowed to feed on it separately for 24 and 48 hrs. The hsp70 expression was measured by O-nitrophenyl-β-D-galactopyranoside assay, tissue damage by trypan blue exclusion test and β-galactosidase activity was monitored by in situ histochemical β-galactosidase staining. Oxidative stress was monitored by performing lipid peroxidation assay and total protein estimation. Ethidium bromide/acridine orange staining was performed on midgut cells for apoptotic index and the comet assay was performed for the DNA damage. The results of the present study showed that the exposure of 0.199 and 3.996 µg/µl of GCNC were toxic for 24 hr of exposure and for 48 hr of exposure: 0.099, 0.199 and 3.996 µg/µl of GCNC was toxic. The dose of 0.033 µg/µl of GCNC showed no toxic effects on its exposure to the third instar larvae for 24 hr as well as 48 hrs. This dose can be considered as No Observed Adverse Effect Level (NOAEL).  相似文献   

17.
Ultrasound-mediated DNA transfer for bacteria   总被引:2,自引:0,他引:2  
In environmental microbiology, the most commonly used methods of bacterial DNA transfer are conjugation and electroporation. However, conjugation requires physical contact and cell–pilus–cell interactions; electroporation requires low-ionic strength medium and high voltage. These limitations have hampered broad applications of bacterial DNA delivery. We have employed a standard low frequency 40 kHz ultrasound bath to successfully transfer plasmid pBBR1MCS2 into Pseudomonas putida UWC1, Escherichia coli DH5α and Pseudomonas fluorescens SBW25 with high efficiency. Under optimal conditions: ultrasound exposure time of 10 s, 50 mM CaCl2, temperature of 22°C, plasmid concentration of 0.8 ng/µl, P. putida UWC1 cell concentration of 2.5 × 109 CFU (colony forming unit)/ml and reaction volume of 500 µl, the efficiency of ultrasound DNA delivery (UDD) was 9.8 ± 2.3 × 10−6 transformants per cell, which was nine times more efficient than conjugation, and even four times greater than electroporation. We have also transferred pBBR1MCS2 into E. coli DH5α and P. fluorescens SBW25 with efficiencies of 1.16 ± 0.13 × 10−6 and 4.33 ± 0.78 × 10−6 transformants per cell, respectively. Low frequency UDD can be readily scaled up, allowing for the application of UDD not only in laboratory conditions but also on an industrial scale.  相似文献   

18.
The photosynthetic and respiratory rates of 5- to 7-year-old aspen stems (Populus tremuloides Michx.) were monitored in the field for 1 year to determine the seasonal patterns. The stem was not capable of net photosynthesis, but the respiratory CO2 loss from the stem was reduced by 0 to 100% depending on the time of year and the level of illumination as a result of bark photosynthesis. The monthly dark respiratory rate ranged from 0.24 mg CO2/dm2· hr in January to a maximum 7.4 mg CO2/dm2· hr in June. Individual measurements ranged from 0.02 mg CO2/dm2· hr in February to 12.3 mg CO2/dm2· hr in June. Gross photosynthesis followed a pattern similar to the dark respiratory rate. The mean monthly rate was highest in June (1.65 mg CO2/dm2· hr) and lowest in December (0.02 mg CO2/dm2· hr). Individual measurements ranged from 0.0 mg CO2/dm2· hr in winter to 5.5 mg CO2/dm2· hr in July.  相似文献   

19.
Serum Mg++ levels before, during, and after replacement transfusion were determined in 20 newborn infants. In 10 infants exchanged with acid-citrate-dextrose (ACD) blood, the level fell from 1.75 ± 0.16 mEq./l. to 0.99 ± 0.16 mEq./l. By contrast, levels in 10 infants exchanged with two types of heparinized blood were unchanged: the pre-exchange values were 1.59 ± 0.11, and the postexchange levels were 1.59 ± 0.08 mEq./l. Mean values for donor bloods were 0.42 ± 0.07 mEq./l. with ACD blood, and 1.45 ± 0.03 mEq./l. with heparinized blood. In vitro studies involving the addition of known amounts of citrate to standard Mg++ solutions demonstrated that the citrate caused a reduction of ionic magnesium. It is proposed that the fall in serum Mg++ when ACD blood is used for exchange transfusion is the combined result of Mg++ binding by the citrate, and the dilution effect of the relatively large proportion of anticoagulant to blood (1:3) used with the ACD mixture.  相似文献   

20.
The regulation of phosphoenolpyruvate synthesis in pigeon liver   总被引:9,自引:9,他引:0  
1. The intracellular location and maximal activities of enzymes involved in phosphoenolpyruvate synthesis have been investigated in pigeon liver. Enolase and pyruvate kinase were cytoplasmic, and the activities were 50–60 and 180–210μmoles/min./g. dry wt. at 25° respectively. Phosphoenolpyruvate carboxykinase was present exclusively, and nucleoside diphosphokinase predominantly, in the mitochondria; the particles had to be disrupted to elicit maximal activities, which were 27–33 and 400–600μmoles/min./g. dry wt. at 25° respectively. The activities of all four enzymes did not change significantly during 48hr. of starvation. 2. Conditions for incubation of washed isolated mitochondria were established, to give high rates of synthesis of phosphoenolpyruvate, linear with time and proportional to mitochondrial concentration. Inorganic phosphate and added adenine nucleotides were stimulatory, whereas added Mg2+ inhibited, partly owing to activation of contaminant pyruvate kinase. Phosphoenolpyruvate formation occurred from oxaloacetate, malate, fumarate, succinate, α-oxoglutarate and citrate, in decreasing order of effectiveness. 3. The steady-state ATP/ADP ratio of mitochondrial suspensions was decreased in the presence of added 2·5mm-Mg2+ (owing to stimulation of adenylate kinase and possibly of an adenosine triphosphatase), 0·5mm-Ca2+ or 0·4mm-dinitrophenol. In each case the rate of substrate removal and oxygen uptake was increased, whereas phosphoenolpyruvate synthesis was inhibited. Citrate formation was enhanced, owing to de-inhibition of citrate synthase. These effects were not primarily related to changes in the oxaloacetate concentration. 4. Both phosphoenolpyruvate carboxykinase and nucleoside diphosphokinase were active within the atractylosidesensitive barrier to the mitochondrial metabolism of added adenine nucleotides. There was no correlation between the rate of substrate-level phosphorylation associated with the oxidation of α-oxoglutarate, and the synthesis of phosphoenolpyruvate. 5. The results suggest that phosphoenolpyruvate formation in pigeon-liver mitochondria is regulated partly by the phosphorylation state of the adenine and guanine nucleotides, and partly by variations in the oxaloacetate concentration, all in the mitochondrial matrix. 6. Phosphoenolpyruvate is assumed to be the metabolite transported from the mitochondria to the cytoplasm during gluconeogenesis from oxaloacetate in pigeon liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号