首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity.  相似文献   

2.

Background  

When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use.  相似文献   

3.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

4.

Background  

Mitochondria are a valuable resource for studying the evolutionary process and deducing phylogeny. A few mitochondria genomes have been sequenced, but a comprehensive picture of the domestication event for silkworm mitochondria remains to be established. In this study, we integrate the extant data, and perform a whole genome resequencing of Japanese wild silkworm to obtain breakthrough results in silkworm mitochondrial (mt) population, and finally use these to deduce a more comprehensive phylogeny of the Bombycidae.  相似文献   

5.

Introduction  

Even though the necessity of a sustainable use of natural resources is widely accepted, there is neither consensus on how “resource use” is clearly defined nor how it should be measured. Depending on the definition, it can comprise raw material consumption only or the consumption and pollution of natural resources. Consequently, lots of indicators can be applied, and the result of a life cycle assessment study aiming to quantify resource use seems to depend on the selection of impact categories. Therefore, this paper aims at analyzing life cycle impact assessment results obtained by means of several indicators to check if different indexes lead to similar results and if the number of indicators can be reduced.  相似文献   

6.
7.

Background  

The main prediction of life-history theory is that optimal energy allocated among the traits is related to the growth, maintenance and survival. It is hypothesized that the optimal resource allocated to immune function, which generates resistance towards parasites and reduce the fitness losses caused by parasitism, is depending on other requirements for energetic resource and the benefits associated with them. The aims of this study are to investigate in a comparative way (1) how parasitism is related to fish life history traits (fecundity, longevity, mortality), (2) whether there is a trade-off between reproduction and immune investments in fish females (i.e. energetic hypothesis) and in males (i.e. immunohandicap hypothesis), (3) whether parasitism influences host immunity (spleen size) and reproduction (gonad size) in females and males.  相似文献   

8.

Background  

Rats made hypothyroid with propilthyouracil start showing abnormal cycling on the second cycle after the start of the treatment, with a high proportion of spontaneous pseudopregnancies and reduced fertility.  相似文献   

9.

Aims

The objective of this study was to investigate how plants maintain productivity under a limited supply of water and N along the topographical soil water and N gradients in semi-arid forests.

Methods

We investigated forest structure and productivity, N cycling, and water and N use by plants at three different slope positions in a forested area near an arid boundary on a loess plateau in China.

Results

Net primary production (NPP) and aboveground N uptake decreased as soil water and/or N availability decreased on upper slopes; however, NPP and aboveground N uptake were only slightly lower than those of more humid forest ecosystems. Water use efficiency (WUE), N use efficiency (NUE), and fine root biomass increased as soil water and/or N supply decreased with altitude. High NUE was linked to higher N mean residence time, caused by higher N resorption efficiency rather than increasing N productivity.

Conclusions

Our results suggest that NPP and N uptake can be maintained by increasing WUE and NUE and increasing fine root biomass in water and N co-limited semi-arid forest ecosystems near arid boundaries. Such changes in resource use and acquisition strategy can affect production and N cycling via plant-soil feedback systems.
  相似文献   

10.

Purpose  

Chain efficiency is currently a key issue for evaluating the sustainability of products and processes. Thus, the objective of this study was to evaluate how the overall efficiency process improvement carried out in the upstream manufacturing chain of LPB (Liquid Packaging Board) has affected the environmental profile over the last 10 years.  相似文献   

11.
PineappleDB: An online pineapple bioinformatics resource   总被引:1,自引:0,他引:1  

Background  

A world first pineapple EST sequencing program has been undertaken to investigate genes expressed during non-climacteric fruit ripening and the nematode-plant interaction during root infection. Very little is known of how non-climacteric fruit ripening is controlled or of the molecular basis of the nematode-plant interaction. PineappleDB was developed to provide the research community with access to a curated bioinformatics resource housing the fruit, root and nematode infected gall expressed sequences.  相似文献   

12.

Background

Clonal plants spread laterally by spacers between their ramets (shoot–root units); these spacers can transport and store resources. While much is known about how clonality promotes plant fitness, we know little about how different clonal plants influence ecosystem functions related to carbon, nutrient and water cycling.

Approach

The response–effect trait framework is used to formulate hypotheses about the impact of clonality on ecosystems. Central to this framework is the degree of correspondence between interspecific variation in clonal ‘response traits’ that promote plant fitness and interspecific variation in ‘effect traits’, which define a plant''s potential effect on ecosystem functions. The main example presented to illustrate this concept concerns clonal traits of vascular plant species that determine their lateral extension patterns. In combination with the different degrees of decomposability of litter derived from their spacers, leaves, roots and stems, these clonal traits should determine associated spatial and temporal patterns in soil organic matter accumulation, nutrient availability and water retention.

Conclusions

This review gives some concrete pointers as to how to implement this new research agenda through a combination of (1) standardized screening of predominant species in ecosystems for clonal response traits and for effect traits related to carbon, nutrient and water cycling; (2) analysing the overlap between variation in these response traits and effect traits across species; (3) linking spatial and temporal patterns of clonal species in the field to those for soil properties related to carbon, nutrient and water stocks and dynamics; and (4) studying the effects of biotic interactions and feedbacks between resource heterogeneity and clonality. Linking these to environmental changes may help us to better understand and predict the role of clonal plants in modulating impacts of climate change and human activities on ecosystem functions.  相似文献   

13.

Background  

Dispersal between habitat patches is a key process in the functioning of (meta)populations. As distance between suitable habitats increases, the ongoing process of habitat fragmentation is expected to generate strong selection pressures on movement behaviour. This leads to an increase or decrease of dispersal according to its cost relative to landscape structure. To limit the cost of dispersal in an increasingly hostile matrix, we predict that organisms would adopt special dispersal behaviour between habitats, which are different from movements associated with resource searching in suitable habitats.  相似文献   

14.
15.
Annotation and query of tissue microarray data using the NCI Thesaurus   总被引:1,自引:0,他引:1  

Background  

The Stanford Tissue Microarray Database (TMAD) is a repository of data serving a consortium of pathologists and biomedical researchers. The tissue samples in TMAD are annotated with multiple free-text fields, specifying the pathological diagnoses for each sample. These text annotations are not structured according to any ontology, making future integration of this resource with other biological and clinical data difficult.  相似文献   

16.

Background  

Electrospinning is a non-mechanical processing strategy that can be used to process a variety of native and synthetic polymers into highly porous materials composed of nano-scale to micron-scale diameter fibers. By nature, electrospun materials exhibit an extensive surface area and highly interconnected pore spaces. In this study we adopted a biological engineering approach to ask how the specific unique advantages of the electrospinning process might be exploited to produce a new class of research/diagnostic tools.  相似文献   

17.

Background and Aims

In this Botanical Briefing we describe how the interactions between plants and their biotic environment can change during range-expansion within a continent and how this may influence plant invasiveness.

Scope

We address how mechanisms explaining intercontinental plant invasions by exotics (such as release from enemies) may also apply to climate-warming-induced range-expanding exotics within the same continent. We focus on above-ground and below-ground interactions of plants, enemies and symbionts, on plant defences, and on nutrient cycling.

Conclusions

Range-expansion by plants may result in above-ground and below-ground enemy release. This enemy release can be due to the higher dispersal capacity of plants than of natural enemies. Moreover, lower-latitudinal plants can have higher defence levels than plants from temperate regions, making them better defended against herbivory. In a world that contains fewer enemies, exotic plants will experience less selection pressure to maintain high levels of defensive secondary metabolites. Range-expanders potentially affect ecosystem processes, such as nutrient cycling. These features are quite comparable with what is known of intercontinental invasive exotic plants. However, intracontinental range-expanding plants will have ongoing gene-flow between the newly established populations and the populations in the native range. This is a major difference from intercontinental invasive exotic plants, which become more severely disconnected from their source populations.  相似文献   

18.

Background  

Time course microarray profiles examine the expression of genes over a time domain. They are necessary in order to determine the complete set of genes that are dynamically expressed under given conditions, and to determine the interaction between these genes. Because of cost and resource issues, most time series datasets contain less than 9 points and there are few tools available geared towards the analysis of this type of data.  相似文献   

19.

Background  

The release of heavy metal-containing nanoparticles (NP) into the environment may be harmful to the efficacy of beneficial microbes that function in element cycling, pollutant degradation and plant growth. Nanoparticles of Ag, CuO and ZnO are of interest as antimicrobials against pathogenic bacteria. We demonstrate here their antimicrobial activity against the beneficial soil microbe, Pseudomonas putida KT2440.  相似文献   

20.

Background  

Initiation of the hair follicle placode and its subsequent growth, maturation and cycling in post-natal skin requires signaling interactions between epithelial cells and adjacent dermal cells and involves Shh signaling via the primary cilium. Previous reports have implicated laminins in hair follicle epithelial invagination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号