首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio‐tracked two woodcreepers (Glyphorynchus spirurus, N = 17; Xiphorhynchus pardalotus, N = 18) and a terrestrial antthrush (Formicarius colma, N = 19). We modeled species‐specific response to distance to forest edge (a continuous variable) based on observations at varying distances from the primary‐secondary forest interface. All species avoided 8–14‐yr‐old secondary forest. Glyphorynchus spirurus and F. colma mostly remained within primary forest <100 m from the young edge. Young F. colma rarely penetrated >100 m into secondary forest 27–31 yr old. Young Formicarius colma and most G. spirurus showed a unimodal response to 8–14‐yr‐old secondary forest, with relative activity concentrated just inside primary forest. After land abandonment, G. spirurus was the first to recover to the point where there was no detectable edge response (after 11–14 yr), whereas X. pardalotus was intermediate (15–20 yr), and F. colma last (28–30 yr +). Given the relatively quick recovery by our woodcreeper species, new legislation on protection of secondary forests > 20‐yr old in Brazil's Pará state may represent a new opportunity for conservation and management; however, secondary forest must mature to at least 30 yr before the full compliment of rain forest‐dependent species can use secondary forest without adverse edge effects.  相似文献   

2.
Shifting cultivation is a widespread land‐use in the tropics that is considered a major threat to rainforest diversity and structure. In the Philippines, a country with rich biodiversity and high rates of species endemism, shifting cultivation, locally termed as kaingin, is a major land‐use and has been for centuries. Despite the potential impact of shifting cultivation on forests and its importance to many people, it is not clear how biodiversity and forest structure recover after kaingin abandonment in the country, and how well these post‐kaingin secondary forests can complement the old‐growth forests. We investigated parameters of forest diversity and structure along a fallow age gradient in secondary forests regenerating after kaingin abandonment in Leyte Island, the Philippines (elevation range: 445–650 m asl). We first measured the tree diversity and forest structure indices in regenerating secondary forests and old‐growth forest. We then measured the recovery of tree diversity and forest structure parameters in relation to the old‐growth forest. Finally, using linear mixed effect models (LMM), we assessed the effect of different environmental variables on the recovery of forest diversity and structure. We found significantly higher species density in the oldest fallow sites, while Shannon’s index, species evenness, stem number, basal area, and leaf area index were higher in the old‐growth forest. A homogeneous species composition was found across the sites of older fallow age. Multivariate analysis revealed patch size as a strong predictor of tree diversity and forest structure recovery after shifting cultivation. Our study suggests that, secondary forests regenerating after shifting cultivation abandonment can recover rapidly. Although recovery of forest structure was not as rapid as the tree diversity, our older fallow sites contained a similar number of species as the old‐growth forest. Many of these species are also endemic to the Philippines. Novel and emerging ecosystems like tropical secondary forests are of high conservation importance and can act as a refuge for dwindling tropical forest biodiversity.  相似文献   

3.
Small farmers in the Bragantina (East-Amazonia, Brazil) traditionally apply a rotation of 2 years cultivation and 4–10 years forest fallow. More recently introduced pepper plantations fell fallow after fungus hazards. We studied the floristic composition of this young secondary vegetation by means of 92 vegetation relevés in 58 plots of forest fallow and 34 plots of pepper fallow with sizes ranging from 40 to 300 m2. The age of the fallow vegetation ranged from 4 months to 10 years. We found 673 species belonging to 97 families. The list of plant species presented in the Appendix totals 827 species, including species collected in additional field surveys. The species are registered with scientific and local names as well as growth forms. The families with the largest numbers of species were Myrtaceae (34 species), Leguminosae (87), Sapindaceae (17), which contain mainly trees and shrubs, and Bignoniaceae (29), Connaraceae (12), Smilacaceae (22) with mainly vines, the forb dominated families Asteraceae (25), Euphorbiaceae (21), Rubiaceae (20), and Cyperaceae (16) and Poaceae (35). A comparison with local and regional inventories shows similarities to fallow vegetations and secondary forests, and floristic distance to primary forests.  相似文献   

4.
Conversion of tropical forests to agriculture affects vertebrate assemblages, but we do not know how fast or to what extent these assemblages recover after field abandonment. We addressed this question by examining amphibians and reptiles in secondary forests in southeastern Mexico. We used chronosequence data (12 secondary forests fallow for 1–23 yr and 3 old‐growth forest sites) to analyze successional trajectories and estimate recovery times of assemblage attributes for amphibians and reptiles. We conducted 6 surveys at each site over 14 mo (1200 person‐hours) and recorded 1552 individuals, including 25 species of amphibians and 36 of reptiles, representing 96 and 74 percent of the expected regional number of species, respectively. Abundance, species richness, and species diversity of amphibians increased rapidly with successional age, approaching old‐growth forest values in < 30 yr. Species richness and species diversity of reptiles reached old‐growth forest values in < 20 yr. By contrast, the abundance of reptiles and the assemblage composition of amphibians and reptiles recovered more slowly. Along the chronosequence, we observed more species replacement in reptile assemblages than in amphibian assemblages. Several species in the old‐growth forest were absent from secondary forests. Dispersal limitation and harsh conditions prevailing in open sites and early successional environments appear to preclude colonization by old‐growth forest species. Furthermore, short fallow periods and isolation of forest remnants lead to the formation of new assemblages dominated by species favored by human disturbances.  相似文献   

5.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

6.
Floristic surveys were carried out in different land use systems(primary and secondary forest, fallows of different ages, cocoa plantations,crop fields) within the forest zone of Cameroon, to assess the impact of landconversion on above-ground plant biodiversity. Beside various diversity studies,plant density was measured and diameter at breast height was estimated.The results showed that the forest areas, which represent thehistoric biodiversity of the region, preserve the greatest number of species(160 species in primary forest and 171 in secondary forest). Our resultsindicate the relatively great importance of secondary forests as refuge areasfor primary forest plant species that may function as a starting point forpossible regeneration of original biodiversity. Species richness is reducedprogressively from the original forest (160 spp.) and secondary forests (171spp.), to Chromolaena odorata (Asteraceae) fallow fields(149 spp.), to an old fallow field (139 spp.), to a cocoa plantation (116 spp.)and to the farmland (64 spp.), where only weeds and crops contribute essentiallyto plant biodiversity. Also the number of species that are used for non-timberproducts (construction, food and medicines) decreased with increased landconversion.  相似文献   

7.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

8.
Liana dynamics in secondary and mature forests are well known in tropical areas dominated by native tree species. Outside the tropics and in secondary forests invaded by exotic species, knowledge is scarce. In this study, we compare liana communities between secondary and mature forests dominated by native species in a subtropical montane area of Sierra de San Javier, Tucuman, Argentina. Additionally, we evaluate changes of liana communities in secondary forests with increasing densities of Ligustrum lucidum and Morus alba, two of the most invasive exotic trees of the area. We surveyed liana species richness and density in three 30-year secondary patches, four 60-year secondary patches, and four mature patches dominated by native tree species, to analyze changes in liana communities with forest age. Within each patch, we sampled 10–25 20 × 20 m quadrats. Additionally, we surveyed liana density and species richness in secondary forest patches with different densities of L. lucidum and M. alba. In native-dominated forests, liana species richness increased and showed a tendency of increasing basal area from 30-year secondary forests to mature forests. Liana density was highly variable, and most of the species were shared between native-dominated secondary and mature forests. Liana density and species richness decreased with L. lucidum density, whereas in secondary forests highly dominated by M. alba, lianas increased in density. Overall, lianas followed different pathways influenced by native forest succession and exotic tree invasions.  相似文献   

9.
There is concern that secondary forests dominated by introduced species, known as novel forests, increase taxonomical similarity between localities and lead to biotic homogenization in human-dominated landscapes. In Puerto Rico, agricultural abandonment has given way to novel forests dominated by the introduced African tulip tree Spathodea campanulata Beauv. (Bignoniaceae). In this study, I characterized the tree species composition of S. campanulata forests in Puerto Rico as means to evaluate if biotic homogenization is occurring. Non-metric multidimensional scaling was used to examine what variables were related to the large (≥10 cm diameter at breast height [DBH]), small (≥2.5 to <10 cm DBH), and juvenile (<2.5 cm DBH) tree species composition of 20 sites. Species composition was strongly related to substrate properties, less related to land use history, and unrelated to spatial attributes. The introduced species component was low (mean = 17%, S.E. = 1.8) and compositional differences were mostly due to native tree species of secondary to old growth forests on equivalent substrates. Animals appear to disperse most species (86%) into these forests yet because of this some introduced species will persist. Although uncommon species were largely absent, recent species establishment is shaped by substrate properties making biotic homogenization in these forests unlikely. The S. campanulata forests of Puerto Rico facilitate native tree species establishment in lands where poor management practices extirpated the original forest. These results highlight the importance of remnant old growth forests or trees that act as seed dispersal sources and facilitate native species recovery in novel forests.  相似文献   

10.
The role of seed bank, seed rain, and regeneration from seedlings and sprouts after swidden agriculture was compared in 5-, 10- and 20-year-old secondary forest and in a primary forest in Bragantina, Pará, Brazil. The seed bank (0–5 cm soil depth) was largest in the 5-year-old forest (1190 ± 284 seeds m−2) and decreased nearly ten-fold with age to 137 ± 19 seeds m−2 in the primary forest. The highest seed rain was in the 5-year-old forest (883 ± 230 seeds m−2 year−1) and the least in the primary forest (220 ± 80 seeds m−2 year−1). Large plants (≥5 cm dbh) had more individuals and species that regenerated from sprouts than from seeds and the most abundant tree species in the secondary forest stands of all ages appear to be maintained by sprouting. The smaller individuals (≥1 m tall, <5 cm dbh) in the 5-year-old forest were mainly from sprouts, but those in the older secondary forests originated mainly from seeds. These results show that at the beginning of succession, although many species can be introduced to swidden fallow from seed bank and seed rain, it is the sprout that is the main source of recruits of primary forest species in secondary forests in Bragantina.  相似文献   

11.
The recovery of genetic variation in newly recolonized populations is an important concern in forest conservation genetics. We examined the potential recovery of genetic diversity and changes to genetic structure in populations of the wind‐pollinated species Tsuga canadensis that naturally regenerated following the extensive 19th century regional forest clearance for agriculture in west‐central Massachusetts. We genotyped 264 individuals across six microsatellite loci and compared levels and patterns of genetic variation between primary forests (forests that were logged but never cleared) and secondary forests (stands that were recolonized following agricultural abandonment). We found no significant reductions in genetic diversity in secondary forests (AR = 5.450; HS = 0.718) compared to primary forests (AR = 5.742; HS = 0.730). Moreover, the population genetic differentiation was also not significantly reduced in secondary compared to primary forests, with no significant genetic structure observed among all populations. These results suggest rapid genetic recovery of T. canadensis populations in recolonized forests compared with other late‐successional temperate tree species.  相似文献   

12.
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range.  相似文献   

13.
Species richness, community composition and ecology of cryptogamic epiphytes (bryophytes, macrolichens) were studied in upper montane primary, early secondary and late secondary oak forests of the Cordillera de Talamanca, Costa Rica. Canopy trees of Quercus copeyensis were sampled with the aim of getting insight in patterns and processes of epiphyte succession and recovery of diversity in secondary forest following forest clearing. Species richness of cryptogamic epiphytes in secondary and primary forests were nearly the same, showing that primary forests are not necessarily more diverse than secondary forests. High species richness of secondary forests was presumed due to the closed canopy, resulting in permanently high atmospheric humidity in these forests. Similarity in species composition of secondary and primary forests increases with forest age, but after 40 years of succession one third (46 species) of primary forest species had not re-established in the secondary forest. Community composition in primary and secondary forests differed markedly and indicates that a long time is needed for the re-establishment of microhabitats and re-invasion of species and communities adapted to differentiated niches. Genera and species exclusive to primary forests are relevant as indicator taxa and conservation targets. Forty percent (68 species) of all species recorded are restricted to secondary forests, indicating the important contribution of secondary forest diversity to total species richness of the oak forests of Costa Rica.  相似文献   

14.
Although deforestation continues to be a major threat to tropical biodiversity, abandonment of agricultural land in Puerto Rico provides an opportunity to study long-term patterns of secondary forest regeneration. Using aerial photographs from 1937, 1967, and 1995, we determined land-use history for 2443 ha in the Cayey Mountains. Pastures were the dominant land cover in 1937 and <20% of the area was classified as forest. Between 1937 and 1995, forest cover increased to 62% due to widespread abandonment of agriculture. To examine the effect of historic land use on current forest structure and species composition, we sampled secondary forests in 24 abandoned pastures, 9 abandoned coffee plantations and 4 old-growth forest sites. Sites were located on two soil types along an elevational gradient (125–710 m) and included a chronosequence from 4 to over 80 years old. After 25–30 years, basal area and species richness in secondary forest sites derived from abandoned pastures and coffee plantations were similar to old-growth forest sites. The species composition of secondary forests derived from abandoned pastures and coffee plantations remained distinct from old-growth forest. In addition to historic land use, age and elevation were important environmental variables explaining variation in secondary forest species composition. Non-indigenous species were common in recently abandoned pastures and coffee plantations, but their importance declined in the older sites. This study demonstrates that secondary forests on private land can be an important component of the conservation of tropical tree biodiversity. Received 16 June 1999; Accepted 8 October 1999.  相似文献   

15.
Vietnam experienced significant alterations of forest environments during the last half of the twentieth century, and reforestation efforts have increased since the 1990s. This study developed comparisons of naturally regenerated and plantation forestlands in northern Vietnam in order to gain a better understanding of reforestation options for the dual objectives of biodiversity and commercial tree production. Stand structure of secondary natural forest after logging and shifting cultivation were investigated at two study sites (Hoa Binh Province and Phu Tho Province). Natural regeneration of seedlings between the secondary natural forests and nearby mixed species plantations were measured and compared. The dominant tree species consisted of Aporosa villosa, Ficus racemosa, Machilus bonii and Vernicia montan at the Hoa Binh site and Cinnamomum parthenoxylum, Ormosia balabsae and Lithocarpus gigantophyllus at the Phu Tho site, which are mostly pioneer species. The secondary natural forests had higher abundance and diversity indices of seedlings than the mixed species plantations. Soil fertility of the secondary natural forests was better than that of the mixed species plantations (P < 0.05). An important finding is that, for the study sites examined, secondary natural forest resulted in more diverse and better-stocked forests than plantation forestry, implying that in areas where reforestation is undertaken the silvicultural potential of natural regeneration should not be underestimated.  相似文献   

16.
Yuan  Chun-ming  Liu  Wen-yao  Tang  Cindy Q.  Li  Xiao-shuang 《Ecological Research》2009,24(6):1361-1370
The species composition, diversity, and abundance of lianas were studied in four secondary forests (a 100-year-old forest, a middle-aged forest, and two younger secondary forests), and compared with an undisturbed primary forest in the Ailao Mountains of subtropical SW China. The results showed that the species composition of lianas differed greatly from the secondary forests to the primary forest, which exhibit early and late-successional species. The abundance of lianas was relatively higher in the two younger and middle-aged secondary forests than in the old-growth secondary and primary forests. However, liana species richness was very limited in the four secondary forests as compared to the primary forest. Root climbers mainly grew in the primary forest, whereas tendril and hook climbers predominated in the four secondary forests, while stem twiners were common in both. The majority of lianas recorded in this study reproduced by animal dispersal, and there was no variation in dispersal modes across the five forest types. A step-wise regression showed that the abundance of small lianas (dbh <4 cm) was positively correlated with the abundance of small- and medium-sized tree stems and negatively correlated with the abundance of large-sized tree stems, whereas there is a strong positive correlation between the abundance of large lianas (dbh ≥4 cm) and large tree stems. Results from the CCA indicate that canopy openness, soil moisture, and average canopy height were the most important factors that influenced the abundance and distribution of lianas.  相似文献   

17.
Epiphytic bryophytes growing on Lithocarpus xylocarpus (Kurz) Markgr. trunks of different diameter classes in primary (132 plots) and secondary (84 plots) Lithocarpus forests in the Ailao Mountains, SW China, were surveyed and analyzed to determine species composition and richness, and to identify environmental variables that may affect it. Among the 65 species (belonging to 32 genera, 19 families) found, 28 occurred in both forests, with Syrrhopodon gardneri (Hook.) Schwaegr. predominanting. Species richness and total coverage in primary forest were significantly higher than in secondary forest. We suggest that a period of perhaps much more than 110 years is necessary for the recovery of epiphytic bryoflora in montane forest of SW China. Fan, turf, and smooth mat are the most important life forms, with high occurrences in both forests. The life form composition of epiphytic bryophytes is determined mainly by microhabitat and host age. Tree age, the presence of primary forest, bark pH, and plot exposure are the environmental variables that have significantly influenced the composition of epiphytic bryophytes. Tree age explained most variations in epiphytic bryoflora. Bark pH is another important parameter that significantly influenced the epiphytic bryophyte community, but seemed indirectly correlated with tree age. Primary forest is a favorable habitat for epiphytes, due mainly to its diversified canopy structure and the presence of large diameter hosts. Moisture-laden southwest trade winds and forest structure could differentiate microclimate and impel a distinct composition of epiphytes in windward and leeward exposures.  相似文献   

18.
We examined the impacts of land-use history on the species composition and diversity of a warm-temperate riparian forest landscape in Kyushu, southern Japan, focusing on the relationship between evergreen oaks and deciduous trees in natural and seminatural forests. The species composition of 59 plots was classified into four types (A to D). Type A, which showed a significant bias towards sites not subject to nonforest land use since 1947, had high species diversity consisting of (1) many lucidophyllous components of the region, including the rare indigenous oak Quercus hondae, and (2) summergreen tree species of varying dominance and number representing unique or locally rare elements of the riparian landscape in this warm-temperate region. Type B was dominated by a common species of oak, Q. glauca, and displayed less clear distribution bias with land-use history. In contrast to types A and B, types C and D, which were characterized by high dominance of deciduous trees, had negative bias away from sites that had been under forest land use in 1947. Presumably, intensive anthropogenic disturbances associated with nonforest land uses had expanded the habitats for deciduous trees. This phenomenon was represented by the establishment of forests (type D) dominated by Ulmus davidiana var. japonica (UDJ) after it had been released from the suppression of evergreen forest trees during a period of nonforest land use that prevents the successful recovery of evergreen trees. From these results we conclude that the impacts of land-use history on the diversity of warm-temperate riparian forest landscape are multiphased: a period of nonforest land use has a strong negative impact on lucidophyllous forest trees represented by the rare indigenous oak Q. hondae; release from the suppressive effects of the lucidophyllous species then encourages establishment of locally rare deciduous tree flora represented by UDJ, which continue to persist for decades after abandonment of nonforest land use.  相似文献   

19.
In order to clarify the recovery process of the subtropical forest on Okinawa Island, southern Japan, biomass accumulation and the successional trend of species diversity with time were investigated by comparing plots of old-growth and clear logged secondary forests. Self-thinning was an important factor in the development of young secondary forests, and the small variance in tree size within a stand was related to the stand not being fully stratified after clear-cutting. A large variance of size structure in old secondary and old-growth forests implies re-initiation of the understorey. Additionally, the trajectory of stand development indicated that the subtropical forest quickly recovered aboveground biomass, which reached its upper limit at about 50 years after disturbance. However, there was a large distinction in species diversity between the secondary forests and old-growth forests. The diversity of forest floor plants did not recover well after being clear-cut. This indicates that management of the subtropical forest should not only take timber-oriented tree species into account, but also the biodiversity in ground flora. The secondary forests were characterized by Castanopsis sieboldii and Schima wallichii, and the monopolization of C. sieboldii through secondary succession had a negative influence on species diversity. Distylium racemosum dominated at the late development stage and was considered a long-lived competing species that reduced the dominance of C. sieboldii and facilitated the co-occurrence of understorey species. Light-demanding pioneer tree species such as S. wallichii that regenerated after logging should be replaced by competitive effects of climax species, and thus relayed floristic change might increase species diversity along secondary succession.Nomenclature: Hatushima and Amano (1994).  相似文献   

20.
Due to their role in seed dispersal, changes in the community of phyllostomid bats have direct consequences on ecological succession. The objective of this work was to document changes in the structure of bat assemblages among secondary successional stages of tropical rain forest in Chiapas, Mexico. Bats were mist-netted at ground level during 18 months in 10 sites belonging to 3 successional stages: four sites represented early succession (2–8 years of abandonment), four intermediate succession (10–20 years of abandonment), and two late succession (mature old-growth forest).We captured 1,179 phyllostomids comprising 29 species. Phyllostomid species richness was 17 (58% of all species) in the early stage, 18 (62%) in the intermediate stage and 24 (83%) in the late stage. The late successional mature forest possessed nine species that were exclusively found there, whereas early and intermediate successional stages contained only one exclusive species. Sturnira lilium, Artibeus lituratus, Carollia perpicillata, Artibeus jamaicensis and Glossophaga soricina represented 88% of all captured phyllostomid bats. Frugivores made up more than 90% of the species captured in early and intermediate successional stages and 84% in late successional forest. The Bray–Curtis index of dissimilarity showed a replacement of species through successional stages with the largest dissimilarity between early and late stages, followed by intermediate and late, and the lowest dissimilarity between early and intermediate stages. The number of gleaning insectivore species increased during succession. The carnivorous guild was exclusively found in the late stage (three species). We conclude that the late successional mature forest was the main reservoir for the gleaning insectivore and carnivore guilds; however, early and intermediate successional stages possessed a great diversity of species including many frugivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号