首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamyl phosphate caused a maximal inhibition of 50% of the in vitro nitrogenase activity measured by acetylene reduction and dinitrogen reduction. The addition of 1 mM carbamyl phosphate to a N(2)-fixing culture caused a rapid decrease of 30% of the acetylene reduction activity and also repression of nitrogenase biosynthesis. However, carbamyl phosphate had no effect on the reductant-dependent adenosine triphosphate hydrolysis and H(2) evolution reactions catalyzed by nitrogenase. Studies on the binding of carbamyl phosphate to nitrogenase and each of its two components (azoferredoxin and molybdoferredoxin) indicated that optimal binding was obtained only in the presence of an operating nitrogenase system. Moreover, the binding seemed to be on the molybdoferredoxin component rather than azoferredoxin. From a Scatchard plot and a reciprocal plot of the data, the values of n = 2 and dissociation constant (K) of approximately 5 x 10(-5) M were obtained. The value for the dissociation constant was of the same order of magnitude as the endogenous level of carbamyl phosphate in a N(2)-fixing cell. The carbamyl phosphate pool in NH(3)-grown cells was twice that of N(2)-fixing cells.  相似文献   

2.
Regulation of molybdate transport by Clostridium pasteurianum.   总被引:6,自引:6,他引:0       下载免费PDF全文
The regulation of the molybdate (MoO42-) transport activity of Clostridium pasteurianum has been studied by observing the effects of NH3, carbamyl phosphate, MoO42-, and chloramphenicol on the ability of cells to take up MoO42-. Compared with cells fixing N2, cells grown in the presence of 1 mM NH3 are greater than 95% repressed for MoO42- transport. Uptake activity begins to increase just before NH exhaustion (under Ar or N2) and continues to increase throughout the lag period as cells shift from NH3-growing to N2-fixing conditions. When cells are shifted from N2-fixing to NH3-growing conditions the transport activity per fixed number of cells decreases by increase of bells in absence of transport synthesis. Carbamyl phosphate (greater than or equal to 15 mM) but not NH3 inhibits 58% of the in vitro uptake activity. When 1 mM carbamyl phosphate is added just before the exhaustion of NH3, the transport activity, measured 2 h later, is 100% repressed. Cells grown in the presence of high MoO42- (1mM) are 80% repressed for MoO42- transport. Synthesis of the MoO42- transport system is also completely stopped when chloramphenicol (300 mug/ml) is added just before the exhaustion oNH 3 from the medium. These findings demonstrate that the ability of cells to transport MoO42- is dependent upon new protein synthesis and can be repressed by high levels of substrate. The regulation of MoO42- uptake by NH3 or carbamyl phosphate closely parallels the regulation of nitrogenase activity. Activity of neither nitrogenase component (Fe protein or MoFe protein) was detected even 3 h after the exhaustion of the NH3 if either MoO42- was absent or if WO42- was present in place of MoO42-. The duration of the diauxic lag increases with decreasing concentration of MoO42- in the medium. If no MoO42- is present the lag continues indefinitely. If MoO42- is added late in the lag period, growth under N2-fixing conditions resumes but only after a normal induction period.  相似文献   

3.
The involvement of the cytoplasmic membrane in electron transport to nitrogenase has been studied. Evidence shows that nitrogenase activity in Azotobacter vinelandii is coupled to the flux of electrons through the respiratory chain. To obtain information about proteins involved, the changes occurring in A. vinelandii cells transferred to nitrogen-free medium after growth on NH4Cl (depression of nitrogenase activity) were studied. Synthesis of the nitrogenase polypeptides was detectable 5 min after transfer to nitrogen-free medium. No nitrogenase activity could be detected until t = 20 min, whereupon a linear increase of nitrogenase activity with time was observed. Synthesis of nitrogenase was accompanied by synthesis of flavodoxin II and two membrane-bound polypeptides of Mr 29,000 and 30,000. Analysis with respect to changes in membrane-bound NAD(P)H dehydrogenase activities revealed the induction of an NADPH dehydrogenase activity, which was not detectable in membranes isolated from cells grown in the presence of NH4OAc. This induced activity was associated with the appearance of a polypeptide of Mr 29,000 in the NADPH dehydrogenase complex.  相似文献   

4.
The N(2)-fixing system of Clostridium pasteurianum operates under regulatory controls; no activity is found in cultures growing on excess NH(3). The conditions which are necessary for the synthesis and function of this system were studied in whole cells by using acetylene reduction as a sensitive assay for the presence of the N(2)-fixing system. Nitrogenase of N(2)-fixing cultures normally can fix twice as much N(2) as is needed to maintain the growth rate. When cultures that have grown for four or more generations on NH(3) exhaust NH(3) from the medium, a diauxic lag of about 90 min ensues before growth is resumed on N(2). Neither N(2)-fixing nor acetylene reduction activity can be detected before growth is resumed on N(2). N(2) is not a necessary requirement for this synthesis since under argon that contains less than 10(-8)m N(2), the N(2)-fixing system is made. If NH(3) is added to N(2)-dependent cultures, synthesis of the enzyme system is abruptly stopped, but the enzyme already present remains stable and functional for at least 6 hr (over three generations). Cultures grown under argon in a chemostat controlled by limiting ammonia have derepressed nitrogenase synthesis. If the argon is removed and replaced by N(2), partial repression of nitrogenase occurs.  相似文献   

5.
The electron paramagnetic resonance spectra of azoferredoxin and molybdoferredoxin, components of the nitrogenase of Clostridium pasteurianum, disappear when the proteins are oxidized by certain dyes. When molybdoferredoxin and azoferredoxin were mixed in a 1 to 2 molar ratio, the electron paramagnetic resonance spectrum of the mixture was the sum of the two spectra with the exception of a slight change in the azoferredoxin signal. Addition of magnesium ATP and dithionite to this reconstituted nitrogenase resulted in a rapid change in the spectrum of both nitrogenase components; the molybdoferredoxin spectrum at all g-values decreased with a half-life less than 70 ms to 40% of its original size whereas the azoferredoxin signal changed in shape and size with a half-life of less than 40 ms. If an ATP-generating system was added instead of MgATP so that no ADP accumulated, then the molybdoferredoxin signal almost completely disappeared and the azoferredoxin signal changed in shape and slightly in size. These changes occurred at molar ratios of molybdoferredoxin to azoferredoxin from 1:14 to 1:0.2. If the reaction was allowed to consume the reductant, then the molybdoferredoxin signal(s) was restored but the azoferredoxin signal disappeared. The signal of azoferredoxin was restored and the signal of molybdoferredoxin again disappeared on addition of more reductant. The data suggest that for nitrogenase to catalyze the reduction of substrates, the magnesium ATP-reduced azoferredoxin complex is formed first and this complex then reacts with molybdoferredoxin to allow electron flow. In addition the data suggests that the rate-limiting reaction is an ATP-mediated electron flow from azoferredoxin to molybdoferredoxin. Finally the results show that no flow of electrons from azoferredoxin or molybdoferredoxin occurs when a mixture of ADP and ATP in a molar ratio of 2:1 is added initially or is reached by conversion of ATP to ADP and inorganic phosphate during reduction of protons. A mechanism consistent with these findings is proposed.  相似文献   

6.
The role of Mo in the activity and synthesis of the nitrogenase components of Clostridium pasteurianum has been studied by observing the competition of Mo with its structural analogue W. Clostridial cells when fixing N2 appeared strictly dependent upon the available Mo, showing maximal N2-fixing activity at molybdate concentrations in the media of 10 muM. Cells grown in media with 3 times 10(-6) muM Mo, although showing good growth, had only 15% as much N2-fixing activity. In the presence of W the synthesis of both nitrogenase components, molybdoferredoxin and azoferredoxin, was affected. Attempts to produce nitrogenase in W-grown cells by addition of high molybdenum to the media in the presence of inhibitors of protein synthesis showed that Mo incorporation into a possible inactive preformed apoenzyme did not occur. Unlike other molybdoenzyme-containing cells, in which W either is incorporated in place of Mo to yield inactive protein or initiates the production of apoprotein, C. pasteurianum forms neither a tungsten substituted molybdoferredoxin nor an apoprotein. It is concluded that in C. pasteurianum molybdenum is an essential requirement for both the biosynthesis and activity of its nitrogenase.  相似文献   

7.
The reduction of N2 to 2NH3 by Klebsiella pneumoniae nitrogenase was studied by a rapid-quench technique. The pre-steady-state time course for N2H4, formed on quenching by the acid-induced hydrolysis of an enzyme-bound intermediate in N2 reduction, showed a 230 ms lag followed by a damped oscillatory approach to a constant concentration in the steady state. The pre-steady-state time course for NH3 formation exhibited a lag of 500 ms and a burst phase that was essentially complete at 1.5s, before a steady-state rate was achieved. These time courses have been simulated by using a previously described kinetic model for the mechanism of nitrogenase action [Lowe & Thorneley (1984) Biochem. J. 224, 877-886]. A hydrazido(2-) structure (=N-NH2) is favoured for the intermediate that yields N2H4 on quenching. The NH3-formation data indicate enzyme-bound metallo-nitrido (identical to N) or -imido (=NH) intermediates formed after N-N bond cleavage to produce the first molecule of NH3 and which subsequently give the second molecule of NH3 by hydrolysis on quenching. The simulations require stoichiometric reduction of one N2 molecule at each Mo and the displacement of one H2 when N2 binds to the MoFe protein. Inhibition by H2 of N2-reduction activity occurs before the formation of the proposed hydrazido(2-) species, and is explained by H2 displacement of N2 at the active site.  相似文献   

8.
Regulation of nitrogen fixation in Rhizobium sp.   总被引:3,自引:2,他引:1       下载免费PDF全文
Regulation of nitrogen fixation by ammonium and glutamate was examined in Rhizobium sp. 32H1 growing in defined liquid media. Whereas nitrogenase synthesis in Klebsiella pneunoniae is normally completely repressed during growth on NH4+, nitrogenase activity was detected in cultures of Rhizobium sp. grown with excess NH4+. However, an "ammonium effect" on activity was invariably observed in cultures grown on NH4+ as sole nitrogen source; the nitrogenase activity was, depending on conditions, 14 to 36% of that of comparable glutamate-grown cultures. Glutamate inhibited utilization of exogenous NH4+ and, in one of two procedures described, glutamate partially alleviated the ammonium effect on nitrogenase activity. NH4+, apparently produced from N2, was excreted into the culture medium when growth was initiated on glutamate, but not when NH4+ was thesole source of fixed nitrogen for growth. These findings are discussed in relation to nitrogen fixation by Rhizobium bacteroids.  相似文献   

9.
Nostoc sp. colonies from field collections were cultured and propagated on silica sand with aqueous N-free BG-11 medium. Laboratory experiments were conducted to characterize the in vivo freeze-recovery physiology of nitrogenase activity. Nitrogenase activity was monitored by the acetylene reduction technique. Frozen Nostoc sp. colonies were thawed and warmed to 10, 15, 20, 25, or 30°C. At 25 and 30°C, nitrogenase activity was detected within 6 h after thawing. At 20°C or lower, nitrogenase activity was not detected until 12 h after thawing. Optimum thawing temperature with respect to the recovery of nitrogenase activity was 25°C. In subsequent experiments, laboratory-grown Nostoc colonies were used along with the following conditions: prefreezing treatment of 3 days of exposure to light or darkness, freezing, and then thawing to 25°C in light or darkness with or without metabolic inhibitors [3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU), monofluoroacetate, or chloramphenicol]. Approximately 30% of the energy in the initial recovery of nitrogenase activity (to 12 h after thawing) appeared to be supplied via the utilization of carbon compounds stored before freezing. Photosynthetic conditions (i.e., light and without DCMU) were necessary for maximum recovery of nitrogenase activity. In the presence of the protein synthesis inhibitor chloramphenicol, nitrogenase activity was still detected at 12 to 48 h after thawing. Although damage may occur to nitrogenase, some of the enzyme was capable of surviving the freeze-thaw period in vivo. However, complete recovery of nitrogenase activity (equal to prefreezing activity) may entail some de novo synthesis of nitrogenase.  相似文献   

10.
Rates of nitrogenase synthesis by Klebsiella pneumoniae were measured by pulse-labelling organisms with a mixture of 14C-labelled amino acids followed by sodium dodecyl sulphate gel electrophoresis and autoradiography. Populations from an NH4+-repressed, SO42--limited chemostat (0.46 mg dry wt ml-1), when released from NH4+ repression, simultaneously synthesized detectable quantities of the three nitrogenase polypeptides 45 min before acetylene-reducing activity was observed. Exposure of populations synthesizing nitrogenase to air or NH4+ (200 microgram N ml-1) repressed synthesis of both component proteins simultaneously, the rate initially decreasing by half in 11 to 12 min; in the presence of NH4+ a second slower phase with an approximate half-life of 30 min was observed. With 5% O2 in N2 the half-lives for the decreases in the rates of synthesis were 30 min for the Fe protein and 33 min for the Mo-Fe protein. Oxygen also repressed nitrogenase in a glutamine synthetase constitutive derivative of K. pneumoniae (strain SK24) which escapes NH4+ repression. Regulation of nitrogenase by O2 may therefore be independent of glutamine synthetase.  相似文献   

11.
Inhibition of nitrogenase activity by NH+4 in Rhodospirillum rubrum.   总被引:20,自引:15,他引:5       下载免费PDF全文
Nitrogenase activities and the patterns of in vivo inhibition of nitrogenase by NH+4 were compared in Rhodospirillum rubrum grown under several conditions of nitrogen availability. In cells grown on N2 or glutamate plus N2, nitrogenase activity was relatively low and was totally inhibited by added NH+4 in 15 to 20 min. In contrast, cells grown on glutamate alone displayed higher nitrogenase activity, and NH+4 had very little effect. Cells grown on limiting amounts of NH+4 had lower nitrogenase activity, but NH+4 produced little inhibitory effect. Uptake of NH+4 could be demonstrated under all of these conditions, and this uptake was blocked by DL-methionine-dl-sulfoximine. The data indicated that cells not recently exposed to NH+4 had no mechanism for rapidly turning off nitrogenase activity in response to sudden additions of NH+4. In contrast, cells grown in the presence of N2, which form NH+4 internally, inhibited nitrogenase activity relatively quickly in response to added NH+4.  相似文献   

12.
1. A new procedure is described for selecting nitrogenase-derepressed mutants based on the method of Brenchley et al. (Brenchley, J.E., Prival, M.J. and Magasanik, B. (1973) J. Biol. Chem. 248, 6122-6128) for isolating histidase-constitutive mutants of a non-N2-fixing bacterium. 2. Nitrogenase levels of the new mutants in the presence of NH4+ were as high as 100% of the nitrogenase activity detected in the absence of NH4+. 3. Biochemical characterization of these nitrogen fixation (nif) derepressed mutants reveals that they fall into three classes. Three mutants (strains SK-24, 28 and 29), requiring glutamate for growth, synthesize nitrogenase and glutamine synthetase constitutively (in the presence of NH4+). A second class of mutants (strains SK-27 and 37) requiring glutamine for growth produces derepressed levels of nitrogenase activity and synthesized catalytically inactive glutamine synthetase protein, as determined immunologically. A third class of glutamine-requiring, nitrogenase-derepressed mutants (strain SK-25 and 26) synthesizes neither a catalytically active glutamine synthetase enzyme nor an immunologically cross-reactive glutamine synthetase protein. 4. F-prime complementation analysis reveals that the mutant strains SK-25, 26, 27, 37 map in a segment of the Klebsiella chromosome corresponding to the region coding for glutamine synthetase. Since the mutant strains SK-27 and SK-37 produce inactive glutamine synthetase protein, it is concluded that these mutations map within the glutamine synthetase structural gene.  相似文献   

13.
Nitrogenase activity exhibits a dilution effect. Evidence is presented that the reason for the dilution effect is that one of the component proteins of nitrogenase is limiting in preparations of this enzyme. The limiting component appears to be the non-haem-iron-containing protein (also called fraction II, iron protein, azoferredoxin), which is equivalent to the enhancement factor for nitrogenase activity present in extracts of nitrogenaseless mutant 22R1. A mathematical function of specific activity is described that is useful in describing nitrogenase. It takes into account the dilution effect and the exponential nature of the relationship between nitrogenase activity and enzyme protein concentration.  相似文献   

14.
Growth and nitrogenase activity were studied in cultures ofAzotobacter vinelandii growing with dinitrogen, ammonium sulfate, aspartic acid or yeast extract. Nitrogenase activity was measured by means of the C2H2 reduction test.In the presence of ammonium sulfate nitrogenase is completely repressed. After exhaustion of ammonia its activity is restored following a diauxic lag period of 30 min. With aspartic acid nitrogenase activity is partially repressed, and growth yield is higher than in the culture growing with N2 only. This is due to simultaneous use of dinitrogen and aspartate. Fluctuations of nitrogenase activity occurring during exponential growth and the mechanism of their regulation are discussed.Abbreviations NA nitrogenase activity - BNF Burk's nitrogen free medium  相似文献   

15.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteroids in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected. The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

16.
A Ernst  S Reich    P Bger 《Journal of bacteriology》1990,172(2):748-755
In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. B?ger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification.  相似文献   

17.
Nitrogenase activity in Rhodospirillum rubrum was inhibited by NH4+ more rapidly in low light than in high light. Furthermore, the nitrogenase of cells exposed to phosphorylation uncouplers was inhibited by NH4+ more rapidly than was the nitrogenase of controls without an uncoupler. These observations suggest that high levels of photosynthate inhibit the nitrogenase inactivation system. L-Methionine-DL-sulfoximine, a glutamine synthetase inhibitor, prevented NH4+ from inhibiting nitrogenase activity, which suggests that NH4+ must be processed at least to glutamine for inhibition to occur. An inhibitor of glutamate synthase activity, 6-diazo-5-oxo-L-norleucine, inhibited nitrogenase activity in the absence of NH4+, but only in cells exposed to low light. The mechanism of 6-diazo-5-oxo-L-norleucine inhibition appeared to be the same as that induced by NH4+, because nitrogenase activity could be restored in vitro by activating enzyme and Mn2+. The inhibitor data suggest that the glutamine pool or a molecule that responds to it activates the Fe protein-modifying (or protein-inactivating) system and that the accumulation of this (unidentified) molecule is retarded when the cells are exposed to high light. It was confirmed here that Anabaena nitrogenase is also inhibited by NH4+, but only when the cells are incubated under low light. This inhibition, however, unlike that in R. rubrum, could be completely reversed in high light, suggesting that the mechanisms of nitrogenase inhibition by NH4+ in these two phototrophs are different.  相似文献   

18.
The interaction of ATP with both iron-sulfur proteins of nitrogenase from Clostridium pasteurianum, azoferredoxin and molybdoferredoxin, has been studied by low-temperature EPR spectroscopy. ATP in the presence of Mg2+ changes the rhombic EPR signal of azoferredoxin with g-values of 2.06, 1.94 and 1.87 to an axial signal, with g values of 2.04 and 1.93. The binding of two molecules of ATP per azoferredoxin dimer (mol. wt 55 000) is suggested. Comparative data with other purine and pyrimidine nucleotides and ATP analogues demonstrate the involvement of structural elements of the substrate in the conversion of the EPR signal of azoferredoxin. A similar effect is induced by 5 M urea, which suggests that ATP causes a conformation change of the protein. In contrast, no effect of ATP was observed on the EPR signal of molybdoferredoxin.  相似文献   

19.
20.
Nitrogenase Activity and Photosynthesis in Plectonema boryanum   总被引:3,自引:1,他引:2       下载免费PDF全文
Nitrogen-starved Plectonema boryanum 594 cultures flushed with N(2)/CO(2) or A/CO(2) (99.7%/0.3%, vol/vol) exhibited nitrogenase activity when assayed either by acetylene reduction or hydrogen evolution. Oxygen evolution activities and phycocyanin pigments decreased sharply before and during the development of nitrogenase activity, but recovered in the N(2)/CO(2) cultures after a period of active nitrogen fixation. Under high illumination, the onset of nitrogenase activity was delayed; however, the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) eliminated this lag. Oxygen was a strong and irreversible inhibitor of nitrogenase activity at low (>0.5%) concentrations. In the dark, low oxygen tensions (0.5%) stimulated nitrogenase activity (up to 60% of that in the light), suggesting a limited but significant respiratory protection of nitrogenase at low oxygen tensions. DCMU was not a strong inhibitor of nitrogenase activity. A decrease in nitrogenase activity after a period of active nitrogen fixation was observed in the N(2)/CO(2-), but not in the A/CO(2-), flushed cultures. We suggest that this decrease in nitrogenase activity is due to exhaustion of stored substrate reserves as well as inhibition by the renewed oxygen evolution of the cultures. Repeated peaks of alternating nitrogenase activity and oxygen evolution were observed in some experiments. Our results indicate a temporal separation of these basically incompatible reactions in P. boryanum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号