共查询到20条相似文献,搜索用时 15 毫秒
1.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. 相似文献
2.
Stable transformation of the moss Physcomitrella patens 总被引:9,自引:0,他引:9
D. Schaefer J. -P. Zryd C. D. Knight D. J. Cove 《Molecular & general genetics : MGG》1991,226(3):418-424
Summary We report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained. 相似文献
3.
Genetic analysis of a mutant class of Physcomitrella patens in which the polarity of gravitropism is reversed. 总被引:4,自引:0,他引:4
Summary In the moss Physcomitrella patens, single-cell protonemata and multicellular gametophores respond to reorientation relative to the gravity vector by growing negatively gravitropically. A mutant class in which the protonemata, but not the gametophores, respond by growing towards gravity has been identified. In this paper, we describe the isolation of additional mutants of this class. Complementation and segregation ratio analyses were carried out on these mutants, which indicate that a single gene may mutate to switch the polarity of gravitropism. 相似文献
4.
As in higher plants, the development of the moss Physcomitrella patens is regulated by environmental signals and phytohormones. At the protonema level transition from chloronema to caulonema cells is under auxin control. The formation on second sub-apical caulonema cells of buds that will give rise to the leafy gametophore requires cytokinins. Using [3H]azidoCPPU (1-(2-azido-6-chloropyrid-4-yl)-3-(4-[3H])phenylurea), a photoactivatable cytokinin agonist, we have specifically photolabelled a soluble 34 kDa protein of P. patens. Urea derivatives were very efficient competitors of photolabelling while purine-type cytokinins were poor competitors. The protein UBP34 was purified by affinity chromatography and the sequences of six internal peptides obtained. A cDNA encoding UBP34 was cloned by screening a P. patens protonema cDNA library with a probe amplified by PCR using degenerate primers designed from the peptide sequences. The UBP34 amino acid sequence shows an average sequence identity of 42% with both intracellular PR proteins and the BetV1-related family of plant allergens. Recombinant UBP34 expressed in Escherichia coli was confirmed to bind azidoCPPU. 相似文献
5.
Hühns Saskia Bauer Christel Buhlmann Sven Heinze Cornelia von Bargen Susanne Paape Martina Kellmann Jan-Wolfhard 《Plant Cell, Tissue and Organ Culture》2003,75(2):183-187
Following mechanical inoculation of the moss Physcomitrella patens (Hedw.) B.S.G. with Tomato spotted wilt virus (TSWV), the virus encoded N nucleocapsid protein was detected in gametophores harvested 11 and 29 dpi and the non-structural NSm movement protein was observed 29 dpi. The detection of both viral proteins presumes that P. patens could serve as a new lab–host for TSWV, allowing reverse genetics by gene targeting to elucidate the role of specified molecular virus–host interactions. 相似文献
6.
Auxin-induced gene expression is described for a variety of different genes including the SAUR-, Aux/IAA- and GH3-families, members of which have been found in seed plants. The precise function of GH3-like proteins in plant development is not well characterised yet. Mutant analysis in Arabidopsis thaliana indicates a possible role for GH3-like proteins in connecting auxin and light signal transduction. Here, we report the isolation of three different GH3-like homologues from a lower land plant, the moss Physcomitrella patens. Two of the GH3-like homologues were chosen for further characterisation. Both genes are expressed in gametophytic tissues, with expression starting very early in moss development. Knockout plants were generated and analysed. In comparison to white-light growth, cultivation of the wild type and knockout plants under red-light conditions resulted in a delay in gametophytic tissue development. The leafy moss plants displayed an elongated phenotype. Growth delay and elongation were even stronger under far-red light conditions. No obvious differences between wild type and knockout plants could be detected under the examined conditions, indicating functional redundancy of the two genes. 相似文献
7.
Mapping of the Physcomitrella patens proteome 总被引:2,自引:0,他引:2
The moss Physcomitrella patens is unique among land plants due to the high rate of homologous recombination in its nuclear DNA. The feasibility of gene targeting makes Physcomitrella an unrivalled model organism in the field of plant functional genomics. To further extend the potentialities of this seed-less plant we aimed at exploring the P. patens proteome. Experimental conditions had to be adopted to meet the special requirements connected to the investigations of this moss. Here we describe the identification of 306 proteins from the protonema of Physcomitrella. Proteins were separated by two dimensional electrophoresis, excised form the gel and analysed by means of mass spectrometry. This reference map will lay the basis for further profound studies in the field of Physcomitrella proteomics. 相似文献
8.
9.
The mechanisms plants use to adapt to abiotic stress have been widely studied in a number of seed plants. Major research has been focused on the isolation of stress-responsive genes as a means to understand the molecular events underlying the adaptation process. To study stress-related gene regulation in the moss Physcomitrella patens we have isolated two cDNAs showing homology to highly conserved small hydrophobic proteins from different seed plants. The corresponding genes are up-regulated by dehydration, salt, sorbitol, cold and the hormone abscisic acid, indicating overlapping pathways are involved in the control of these genes. Based on the molecular characterization of the moss homologs we propose that signaling pathways in response to abiotic stress may have been altered during the evolution of land plants.Abbreviation ABA Abscisic acid - EST Expressed sequence tag 相似文献
10.
Kenji Komatsu Yuri Nishikawa Tomohito Ohtsuka Teruaki Taji Ralph S. Quatrano Shigeo Tanaka Yoichi Sakata 《Plant molecular biology》2009,70(3):327-340
We employed a comparative genomic approach to understand protein phosphatase 2C (PP2C)-mediated abscisic acid (ABA) signaling
in the moss Physcomitrella patens. Ectopic expression of Arabidopsis (Arabidopsis thaliana) abi1-1, a dominant mutant allele of ABI1 encoding a PP2C involved in the negative regulation of ABA signaling, caused ABA insensitivity of P. patens both in gene expression of late embryogenesis abundant (LEA) genes and in ABA-induced protonemal growth inhibition. The transgenic
abi1-1 plants showed decreased ABA-induced freezing tolerance, and decreased tolerance to osmotic stress. Analyses of the P. patens genome revealed that only two (PpABI1A and PpABI1B) PP2C genes were related to ABI1. In the ppabi1a null mutants, ABA-induced expression of LEA genes was elevated, and protonemal growth was inhibited with lower ABA concentration compared to the wild type. Moreover,
ABA-induced freezing tolerance of the ppabi1a mutants was markedly enhanced. We provide the genetic evidence that PP2C-mediated ABA signaling is evolutionarily conserved
between Arabidopsis and P. patens.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Accession Numbers: PpABI1A-AB369256, PpABI1B-AB369255, pphn39k21-AB369257. 相似文献
11.
ent-Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent-kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent-kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent-kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101-kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent-kaurene skeleton from GGDP. PpCPS/KS has two aspartate-rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent-kaurene and ent-16alpha-hydroxykaurene). 相似文献
12.
Summary Mutant strains of the mossPhyscomitrella patens that were resistant to the antibiotics streptomycin and chloramphenicol were isolated following UV irradiation. Mutants resistant
to streptomycin at 1.7×10−4
M showed both dominant and recessive Mendelian and inheritance patterns. Mutants resistant to streptomycin at 1.7 ¢ 10−4
M and to chloramphenicol at 3.1×10−4
M were, with one exception, cytoplasmically inherited. 相似文献
13.
Abscisic acid (ABA) has been postulated to play a role in the development of freezing tolerance during the cold acclimation process in higher plants, but its role in cold tolerance in tower land plants has not been elucidated. The moss Physcomitrella patens rapidly developed freezing tolerance when its protonemata were grown in a medium containing ABA, with dramatic changes in the LT50 value from -2 degrees C to over -10 degrees C. We examined physiological and morphological alterations in protonema cells caused by ABA treatment to elucidate early cellular events responsible for rapid enhancement of freezing tolerance. Microscopic observations revealed that ABA treatment for 1 day resulted in a dramatic alteration in the appearance of intracellular organelles. ABA-treated cells had slender chloroplasts, with a reduced amount of starch grains, in comparison with those of non-treated cells. The ABA-treated cells also had several segmented vacuoles while many of non-treated cells had one central vacuole. When frozen to -4 degrees C, freezing injury-associated ultrastructural changes such as formation of aparticulate domains and fracture-jump lesions were frequently observed in the plasma membrane of non-treated protonema cells but not in that of ABA-treated cells. The ABA treatment increased the osmotic concentration of the protonema cells, in correlation with accumulation of free soluble sugars. These results suggest that ABA-induced accumulation of soluble sugars, associated with morphological changes in organelles, mitigated freezing-induced structural damage in the plasma membrane, eventually leading to enhancement of freezing tolerance in the protonema cells. 相似文献
14.
Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens 总被引:1,自引:0,他引:1
Nagao M Oku K Minami A Mizuno K Sakurai M Arakawa K Fujikawa S Takezawa D 《Phytochemistry》2006,67(7):702-709
Mosses are known to have the ability to develop high degrees of resistance to desiccation and freezing stress at cellular levels. However, underlying cellular mechanisms leading to the development of stress resistance in mosses are not understood. We previously showed that freezing tolerance in protonema cells of the moss Physcomitrella patens was rapidly increased by exogenous application of the stress hormone abscisic acid (ABA) [Minami, A., Nagao, M., Arakawa, K., Fujikawa, S., Takezawa, D., 2003a. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J. Plant Physiol. 160, 475-483]. Herein it is shown that protonema cells with acquired freezing tolerance specifically accumulate low-molecular-weight soluble sugars. Analysis of the most abundant trisaccharide revealed that the cells accumulated theanderose (G6-alpha-glucosyl sucrose) in close association with enhancement of freezing tolerance by ABA treatment. The accumulation of theanderose was inhibited by cycloheximide, an inhibitor of nuclear-encoded protein synthesis, coinciding with a remarkable decrease in freezing tolerance. Furthermore, theanderose accumulation was promoted by cold acclimation and treatment with hyperosmotic solutes, both of which had been shown to enhance cellular freezing tolerance. These results reveal a novel role for theanderose, whose biological function has been obscure, in high freezing tolerance in moss cells. 相似文献
15.
Shimizu M Ichikawa K Aoki S 《Biochemical and biophysical research communications》2004,324(4):1296-1301
The CONSTANS (CO) protein is a critical regulator of the photoperiodic control of flowering in Arabidopsis thaliana and Oryza sativa. We isolated a cDNA PpCOL1 encoding a homolog of the CO/CO-LIKE (COL) family proteins from a cryptogam Physcomitrella patens. The predicted PpCOL1 protein has N-terminal zinc finger and C-terminal CCT domains, which are conserved in the angiosperm CO/COL proteins. Structurally, PpCOL1 is the most closely related to the Group Ia or Ic proteins, which include AtCO and AtCOL1/2, among diverged members of the family. A transient expression assay using GFP showed that the CCT domain of PpCOL1 contains a nuclear-localizing signal. Northern blotting analyses revealed that the PpCOL1 expression is controlled by the circadian clock, and moreover, it is photoperiodically regulated at a gametophore stage when the rate of sporophyte formation is affected by day length. These observations indicate a possible involvement of PpCOL1 as a nuclear factor in the photoperiodic regulation of reproduction of Physcomitrella. 相似文献
16.
Aldwin Anterola Erin Shanle Pierre-François Perroud Ralph Quatrano 《Transgenic research》2009,18(4):655-660
Taxadiene synthase gene from Taxus brevifolia was constitutively expressed in the moss Physcomitrella patens using a ubiquitin promoter to produce taxa-4(5),11(12)-diene, the precursor of the anticancer drug paclitaxel. In stable
moss transformants, taxa-4(5),11(12)-diene was produced up to 0.05% fresh weight of tissue, without significantly affecting
the amounts of the endogenous diterpenoids (ent-kaurene and 16-hydroxykaurane). Unlike higher plants that had been genetically modified to produce taxa-4(5),11(12)-diene,
transgenic P. patens did not exhibit growth inhibition due to alteration of diterpenoid metabolic pools. Thus we propose that P. patens is a promising alternative host for the biotechnological production of paclitaxel and its precursors. 相似文献
17.
《Bioscience, biotechnology, and biochemistry》2013,77(5):1340-1347
RecA protein is widespread in bacteria, and it plays a crucial role in homologous recombination. We have identified two bacterial-type recA gene homologs (PprecA1, PprecA2) in the cDNA library of the moss Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA2 to the green fluorescent protein (GFP) caused a targeting of PpRecA2 to the chloroplasts. Mutational analysis showed that the first AUG codon acts as initiation codon. Fusion of the full-length PpRecA2 to GFP caused the formation of foci that were colocalized with chloroplast nucleoids. The amounts of PprecA2 mRNA and protein in the cells were increased by treatment with DNA damaging agents. PprecA2 partially complemented the recA mutation in Escherichia coli. These results suggest the involvement of PpRecA2 in the repair of chloroplast DNA. 相似文献
18.
Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants 总被引:2,自引:0,他引:2
Viëtor R Loutelier-Bourhis C Fitchette AC Margerie P Gonneau M Faye L Lerouge P 《Planta》2003,218(2):269-275
We have investigated the structure of glycans N-linked to the proteins of the moss Physcomitrella patens. The structural elucidation was carried out by western blotting using antibodies specific for N-glycan epitopes and by analysis of N-linked glycans enzymatically released from a total protein extract by combination of MALDI–TOF and MALDI–PSD mass spectrometry analysis. Nineteen N-linked oligosaccharides were characterised ranging from high-mannose-type and truncated paucimannosidic-type to complex-type N-glycans harbouring core-xylose, core-(1,3)-fucose and Lewisa, as previously described for proteins from higher plants. This demonstrates that the processing of N-linked glycans, as well as the specificity of glycosidases and glycosyltransferases involved in this processing, are highly conserved between P. patens and higher plants. As a consequence, P. patens appears to be a new promising model organism for the investigation of the biological significance of protein N-glycosylation in the plant kingdom, taking advantage of the potential for gene targeting in this moss.Abbreviations Asn
asparagine
- CID
collision-induced dissociation
- Glc
glucose
- GlcNAc
N-acetylglucosamine
- Man
mannose
- MALDI–TOF MS
matrix-assisted laser desorption ionization–time of flight mass spectrometry
- PNGase A
peptide N-glycosidase A
- PSD
post-source decay 相似文献
19.
Comparison of gene targeting efficiencies in two mosses suggests that it is a conserved feature of Bryophyte transformation 总被引:2,自引:0,他引:2
The moss, Physcomitrella patens, is a novel tool in plant functional genomics due to its exceptionally high gene targeting efficiency that is so far unique for plants. To determine if this high gene targeting efficiency is exclusive to P. patens or if it is a common feature to mosses, we estimated gene-targeting efficiency in another moss, Ceratodon purpureus. We transformed both mosses with replacement vectors corresponding to the adenine phosphoribosyl transferase (APT) reporter gene. We achieved a gene targeting efficiency of 20.8% for P. patens and 1.05% for C. purpureus. Our findings support the hypothesis that efficient gene targeting could be a general mechanism of Bryophyte transformation. 相似文献
20.
Santosh B. Satbhai Takafumi Yamashino Ryo Okada Yuji Nomoto Takeshi Mizuno Yuki Tezuka Tomonori Itoh Mitsuru Tomita Susumu Otsuki Setsuyuki Aoki 《DNA research》2011,18(1):39-52
The pseudo-response regulators (PRRs) are the circadian clock component proteins in the model dicot Arabidopsis thaliana. They contain a receiver-like domain (RLD) similar to the receiver domains of the RRs in the His–Asp phosphorelay system, but the RLDs lack the phosphoacceptor aspartic acid residue invariably conserved in the receiver domains. To study the evolution of PRR genes in plants, here we characterize their homologue genes, PpPRR1, PpPRR2, PpPRR3 and PpPRR4, from the moss Physcomitrella patens. In the phylogenetic analysis, PpPRRs cluster together, sister to an angiosperm PRR gene subfamily, illustrating their close relationships with the angiosperm PRRs. However, distinct from the angiosperm sequences, the RLDs of PpPRR2/3/4 exhibit a potential phosphoacceptor aspartic acid–aspartic acid–lysine (DDK) motif. Consistently, the PpPRR2 RLD had phosphotransfer ability in vitro, suggesting that PpPRR2 functions as an RR. The PpPRR1 RLD, on the other hand, shows a partially diverged DDK motif, and it did not show phosphotransfer ability. All PpPRRs were expressed in a circadian and light-dependent manner, with differential regulation between PpPRR2/4 and PpPRR1/3. Altogether, our results illustrate that PRRs originated from an RR(s) and that there are intraspecific divergences among PpPRRs. Finally, we offer scenarios for the evolution of the PRR family in land plants. 相似文献