共查询到20条相似文献,搜索用时 0 毫秒
1.
Exercise-induced functional desensitization of canine cardiac beta-adrenergic receptors 总被引:2,自引:0,他引:2
To test the hypothesis that the high levels of endogenous catecholamines associated with strenuous exercise produce functional desensitization of cardiac beta-adrenergic receptors, we measured the bolus chronotropic dose of isoproterenol necessary to produce a 25-beats/min increase in heart rate (CD25) in the resting state and after the return of heart rate to resting levels after 60 min of treadmill running in 13 normal dogs. Immediately after exercise, 12 of 13 dogs were less sensitive to the chronotropic effects of beta-adrenergic receptor stimulation: mean CD25 increased from 1.16 +/- 0.17 to 3.50 +/- 0.98 micrograms (P less than 0.02). A similar reduction in isoproterenol sensitivity was evident regardless of whether testing was performed in the presence or absence of vagal blockade with atropine. By 3 h after exercise, CD25 had returned to the preexercise level, with no further change noted 24 h after exercise. There was no change in the CD25 when measured serially in three unexercised dogs. We conclude that a single bout of dynamic exercise is sufficient to produce a significantly decreased chronotropic responsiveness to isoproterenol. This phenomenon may represent an acute but transient desensitization of cardiac beta-adrenergic receptors. 相似文献
2.
1-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-carboxylic acid (QCA), 1-isoquinolinecarboxylic acid (IQCA), 2,2'-bi-1H-imidazole (2,2'-biimidazole; BI), and 1H-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA) directly and reversibly inhibit homogeneous soluble bovine dopamine beta-hydroxylase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1). HYD, QCA and IAA show competitive allosteric inhibition of dopamine beta-hydroxylase with respect to ascorbate (Kis = 5.7(+/- 0.9) microM, 0.14(+/- 0.03) mM, 0.80(+/- 0.20) mM; nH = 1.4(+/- 0.1), 1.8(+/- 0.4), 2.8(+/- 0.6), respectively). HYD and IAA show slope and intercept mixed-type allosteric inhibition of dopamine beta-hydroxylase with respect to tyramine. QCA shows allosteric uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. HP, BI and IQCA all show linear competitive inhibition (Kis = 1.9(+/- 0.3) microM, 21(+/- 6) microM, and 0.9(+/- 0.3) microM, respectively) with respect to ascorbate. HP and BI show linear mixed-type while IQCA shows linear uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. In the presence of HP, HYD or IAA intersecting double-reciprocal plots of the initial velocity as a function of tyramine concentration at differing fixed levels of ascorbate are observed. These findings are consistent with a uni-uni-ping-pong-ter-bi kinetic mechanism for dopamine beta-hydroxylase that involves a ternary enzyme-ascorbate-tyramine-oxygen complex. The results for HYD, QCA and IAA are the first examples of allosteric inhibitor interactions with dopamine beta-hydroxylase. 相似文献
3.
Nanomolar concentration of thyrotropin-releasing hormone (TRH) in vitro caused a significant reduction of [3H]apomorphine binding sites (70% of the control) in the rat striatum and the limbic forebrain. [3H]Spiperone binding was not affected by TRH. On the other hand, dopamine and apomorphine displaced [3H]TRH binding partially, suggesting the presence of a TRH receptor subpopulation that has a high affinity for dopamine agonist. Most of the neuroleptics displaced [3H]TRH binding dose-dependently in the micromolar range. (-)-Sulpiride had no affinity to TRH receptors. These findings suggest that one of the important roles of TRH as a neuromodulator is to modulate receptors for classical neurotransmitters, and this receptor-receptor interaction may be of importance in explaining the well known stimulating effects of TRH on the dopaminergic system. 相似文献
4.
Mechanism-based inhibitors of dopamine beta-hydroxylase 总被引:2,自引:0,他引:2
The copper-containing monooxygenase dopamine beta-hydroxylase catalyzes the hydroxylation of dopamine at the benzylic position to form norepinephrine. Mechanism-based inhibitors for dopamine beta-hydroxylase have been used as probes of the mechanism of catalysis. The variety of such inhibitors that have been developed for this enzyme can be divided into three groups: (i) those in which the inactivating species is formed by abstraction of a hydrogen atom to form a radical intermediate; (ii) those in which the inactivating species is formed by abstraction of an electron to form an epoxide-like intermediate; and (iii) those in which the product is the inactivating species. A mechanism consistent with inactivation by all three groups of inhibitors which proposes that hydroxylation of dopamine by dopamine beta-hydroxylase involves formation of a benzylic radical has been developed. The benzylic radical is formed by abstraction of a hydrogen atom from the substrate by a high-potential copper-oxygen species. 相似文献
5.
Dopamine beta-hydroxylase (3,4- dihydroxyphenylethylamine ,ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) is the terminal enzyme in the biosynthetic pathway of norepinephrine. Chemical modification studies of this enzyme were executed to investigate contributions of specific amino-acid side-chains to catalytic activity. Sulfhydryl reagents were precluded, since no free cysteine residue was detected upon titration of the denatured or native protein with 2-chloromercuri-4-nitrophenol. Incubation of enzyme with diazonium tetrazole caused inactivation of the protein coupled with extensive reaction of lysine and tyrosine residues. Reaction with iodoacetamide resulted in complete loss of enzymatic activity with reaction of approximately three histidine residues; methionine reaction was also observed. Modification of the enzyme using diethylpyrocarbonate resulted in complete inactivation of the enzyme, and analysis of the reacted protein indicated a loss of approx. 1.7 histidine residues per protein monomer with no tyrosine or lysine modification observed. The correlation of activity loss with histidine modification supports the view that this residue participates in the catalytic function of dopamine beta-hydroxylase. 相似文献
6.
Dopamine beta-hydroxylase is inactivated by phenyl-, phenethyl-, benzyl-, and methylhydrazine, but not by hydrazine itself. With phenyl-, methyl-, and phenethylhydrazine, the rate of inactivation decreases in the presence of ascorbate and increases in the presence of tyramine. Reduction of the enzyme-bound copper occurs with all of the hydrazines tested. In the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone the carbon-centered radicals generated from each compound are trapped. This is consistent with reduction of the enzyme-bound copper by the hydrazine-containing compounds, resulting in formation of the hydrazine cation radical. Homolytic cleavage of the carbon-nitrogen bond then generates a carbon-centered radical which reacts with the enzyme, resulting in inactivation. Inactivation with [14C]phenylhydrazine results in the incorporation of 0.94 molecule of label per enzyme subunit. Benzylhydrazine behaves as a mechanism-based inhibitor of the enzyme. Both benzyl- and phenethylhydrazine are substrates for dopamine beta-hydroxylase. The second-order rate constant for inactivation of dopamine beta-hydroxylase by benzylhydrazine in the presence of ascorbate is increased about 4-fold when the benzylic hydrogens are replaced with deuterium. The apparent Vmax shows an observed deuterium kinetic isotope effect of 13 +/- 2. The partition ratio for product formation versus inactivation is 11-fold less for alpha,alpha-d2-benzylhydrazine. These results are interpreted in terms of a model where inactivation is due to abstraction of an electron from nitrogen instead of abstraction of a hydrogen atom from the benzylic carbon. 相似文献
7.
Carbachol induces desensitization of cardiac beta-adrenergic receptors through muscarinic M1 receptors 总被引:1,自引:0,他引:1
Incubation of enzymatically dissociated cardiac myocytes with carbachol leads to a time- and concentration-dependent loss of beta-receptors assayable with [3H]CGP-12177. This loss is due to a redistribution of beta-receptors from the plasma membrane to a cytosol-derived vesicular fraction, consistent with an internalization process. The carbachol effects are not influenced by gallamine or oxotremorine which interact with the high-affinity (M2) muscarinic receptors. These results suggest that carbachol-induced desensitization is secondary to activation of protein kinase C by diacylglycerols generated through M1 receptor-linked phosphoinositide hydrolysis. 相似文献
8.
Human cardiac beta-adrenergic receptors: subtype heterogeneity delineated by direct radioligand binding 总被引:12,自引:0,他引:12
Human myocardial beta-adrenergic receptors were directly identified and characterized using the high affinity antagonist radioligand [125I]iodocyanopindolol. Beta 1 and beta 2 adrenergic receptors were found to coexist in both the left ventricle and right atrium. The relative proportions of the two receptor subtypes were determined by the use of competition radioligand binding and computer modelling techniques employing the subtype selective agents atenolol (beta 1 selective) and zinterol (beta 2 selective). The left ventricle contains 86 +/- 1% beta 1 and 14 +/- 1% beta 2 adrenergic receptors while the right atrium contains 74 +/- 6% beta 1 and 26 +/- 6% beta 2 adrenergic receptors. The direct demonstration of beta 2 adrenergic receptors in the human heart, with a higher proportion in the right atrium agrees with pharmacologic data and supports the notion that chronotropic effects of adrenergic agonists in man may be mediated by both beta 1 and beta 2 adrenergic receptors. 相似文献
9.
R C Rosenberg 《Biochimica et biophysica acta》1983,749(3):276-280
The inhibition of bovine dopamine beta-hydroxylase (dopamine beta-monooxygenase, EC 1.14.17.1) by 2-mercapto-1-methylimidazole has been studied using a simple, 'metal-free' assay system. 2-Mercapto-1-methylimidazole is an uncompetitive inhibitor of dopamine beta-hydroxylase with respect to ascorbate and a mixed type of inhibitor with respect to tyramine. These findings are consistent with 2-mercapto-1-methylimidazole interacting exclusively with the reduced form of dopamine beta-hydroxylase. 相似文献
10.
D F Dougan P Duffield D N Wade 《Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol.》1987,86(2):317-324
The mechanism underlying the modulation, by dextroamphetamine and compounds related to phenylethanolamine, of responses to dopamine and serotonin has been studied in the isolated ventricle and aortic bulb of the clam Tapes watlingi. Dextroamphetamine and phenylethanolamine but not cocaine and benztropine have the ability to unmask inhibitory responses to both dopamine and serotonin in the ventricle. Chlordimeform but not clozapine attenuates the inhibitory response to both dextroamphetamine and phenylethanolamine in concentrations which have little or no effect on the inhibitory response to dopamine in the ventricle. Phenylethanolamine, dextroamphetamine, phenylpropylolamine and p-chloro-phenylethanolamine but not octopamine or noradrenaline attenuate the contractile responses to both dopamine and serotonin in preparations of the quiescent aortic bulb. These data show that there are specific receptors for phenylethanolamine in the Tapes heart capable of modulating responses to dopamine and serotonin, and suggests that this biogenic phenethylamine can act as an environmental and physiological factor which may determine how the mollusc heart responds to dopamine. 相似文献
11.
G Colombo N J Papadopoulos D E Ash J J Villafranca 《Archives of biochemistry and biophysics》1987,252(1):71-80
A modified purification procedure has been developed for dopamine beta-hydroxylase isolated from bovine adrenal medulla. Catalase is included in the homogenization step starting with a suspension of either chromaffin granules or adrenal medulla tissue. With this precaution, the enzyme remains stable in the supernatant solution in preparation for the subsequent purification step involving concanavalin A-Sepharose chromatography. The homogeneous enzyme has a specific activity in the range of 60-70 mumol O2 consumed/min/mg. Using radiolabeled metal ion chelators, it was determined that several of the chelators remained tightly bound to the enzyme after removal of the copper leading to difficulties in establishing stoichiometry of enzyme-bound metal ions. 相似文献
12.
13.
W L Strauss G Ghai C M Fraser J C Venter 《Archives of biochemistry and biophysics》1979,196(2):566-573
The solubilization of canine cardiac and hepatic β-adrenergic receptors was characterized with 19 different ionic and nonionic surfactants and surfactant combinations. The effects of alterations in the hydrophobic and hydrophilic moieties of the nonpolar detergents were examined in relation to their efficacy in solubilizing these receptor molecules. Within this group of surfactants the more effective agents contained an average of 9–10 polyoxyethylene units per molecule. The best degree of β-receptor solubilization for both heart and liver was obtained with 1% Brij 96 or a combination of 1% digitonin with 0.25% Triton X-100. Hepatic but not cardiac β-receptors were solubilized by polyoxyethylene ether W-1 or by Triton X-100. Solubilization time courses indicated that the maximum degree of receptor solubilization occurred within 5 min at 0–4 °C. Solubilization temperatures were varied from 0 to 37 °C. Temperatures up to 30 °C increased numbers of cardiac receptors solubilized by 30% over those obtained at 0 °C. The same temperature changes had no significant effects on liver β-receptor solubilization. Increasing the solubilization temperature to 37 °C decreased the detectable number of β-receptors by 91 (liver) and 72% (heart). β-Receptors solubilized in the absence of receptor ligand were extremely labile with a half-life on the order of 90 min at 4 °C for both heart and liver. Occupation of the receptors by [125I]-iodohydroxybenzylpindolol prior to solubilization conferred a certain degree of stability on the receptors. 相似文献
14.
The mechanism-based inhibition of dopamine beta-hydroxylase (DBH; EC 1.14.17.1) by p-cresol (4-methylphenol) and other simple structural analogues of dopamine, which lack a basic side-chain nitrogen, is reported. p-Cresol binds DBH by a mechanism that is kinetically indistinguishable from normal dopamine substrate binding [DeWolf, W. E., Jr., & Kruse, L. I. (1985) Biochemistry 24, 3379]. Under conditions (pH 6.6) of random oxygen and phenethylamine substrate addition [Ahn, N., & Klinman, J. P. (1983) Biochemistry 22, 3096] p-cresol adds randomly, whereas at pH 4.5 or in the presence of fumarate "activator" addition of p-cresol precedes oxygen binding as is observed with phenethylamine substrate. p-Cresol is shown to be a rapid (kinact = 2.0 min-1, pH 5.0) mechanism-based inactivator of DBH. This inactivation exhibits pseudo-first-order kinetics, is irreversible, is prevented by tyramine substrate or competitive inhibitor, and is dependent upon oxygen and ascorbic acid cosubstrates. Inhibition occurs with partial covalent incorporation of p-cresol into DBH. A plot of -log kinact vs. pH shows maximal inactivation occurs at pH 5.0 with dependence upon enzymatic groups with apparent pK values of 4.51 +/- 0.06 and 5.12 +/- 0.06. p-Cresol and related alkylphenols, unlike other mechanism-based inhibitors of DBH, lack a latent electrophile. These inhibitors are postulated to covalently modify DBH by a direct insertion of an aberrant substrate-derived benzylic radical into an active site residue. 相似文献
15.
The catalytic action of dopamine beta-hydroxylase on 1-phenyl-1-propyne results in concomitant loss of enzyme activity. At pH 5.5 and 25 degrees C, 1-phenyl-1-propyne inactivates dopamine beta-hydroxylase in a mechanism-based fashion. The inactivation rate is first-order, follows saturation kinetics, and is strictly dependent on catalysis (oxygen and ascorbate are essential). The inactivation rate of saturating 1-phenyl-1-propyne (kinact) increases from 0.08 to 0.22 min-1 when the oxygen saturation increases from 21 to 100%, respectively. Inactivation also requires a copper-containing catalytically competent enzyme. Tyramine and norepinephrine (respectively, substrate and product of the normal catalytic reaction) protect against inactivation, and no regain of enzyme activity occurs after prolonged dialysis. Experiments with ether-extracted incubation solutions (+/- enzyme) showed no difference in their gas chromatography-mass spectral patterns implying that inactivation of dopamine beta-hydroxylase by 1-phenyl-1-propyne occurs through a kinetic process with a partition ratio (kcat/kinact) equal to or near 1. Thus, this acetylenic substrate analog appears to be a very efficient mechanism-based inhibitor of dopamine beta-hydroxylase. We propose that inactivation of this enzyme by 1-phenyl-1-propyne proceeds by formation of a reactive intermediate that occurs prior to product formation and that alkylates an amino acid residue at the active site of the enzyme. 相似文献
16.
Cardiac beta receptors in rabbits were studied at different times following lethal (5 Gy) or supralethal (10 Gy) whole-body X irradiation. Using the radioactive ligand [125I]iodocyanopindolol, it was found that the maximal binding capacity, as determined from the Scatchard plot, decreased from 298.2 +/- 13.2 fmole/mg protein in controls to 142.4 +/- 5.5 fmole/mg 3 days after 10 Gy whole-body X irradiation, whereas the dissociation constant was only little affected. Three days after an exposure to 5 Gy, maximal binding capacity was reduced slightly and tended toward control values at Day 7. Local irradiation of the cardiac region with 10 Gy reduced cardiac beta receptors to 218 +/- 7 fmole/mg (73% of control) after 3 days. The latter observation suggests that about half the effect of radiation on cardiac beta receptors originates from a direct action of radiation on the heart tissue, the rest being due to abscopal systemic reactions. 相似文献
17.
Dopamine beta-hydroxylase (D beta H) (EC 1.14.17.1) from adrenal medulla is a glycoprotein with approximately 5% carbohydrate by weight. The oligosaccharide chains of this enzyme were enzymatically removed with various glycosidic enzymes (endoglycosidases D, F, and H; glycopeptidase F; alpha-mannosidase; neuraminidase; and beta-galactosidase). The time course of deglycosylation was monitored by polyacrylamide gel electrophoresis, and evidence for sugar removal was shown by a modification of the Western blot technique utilizing 125I-labeled concanavalin A and by amino acid analysis. Protein was detected in the gel by using specific antibodies and 125I-labeled protein A. Steady-state kinetic data of deglycosylated D beta H show minor differences between the native and the deglycosylated protein. The Km values for tyramine were 2.17 and 1.66 mM whereas the Km values for oxygen were 0.18 and 0.14 mM for the native and the deglycosylated protein, respectively. The Vmax values (pH 5.0) for the two forms of the enzyme were comparable, with the deglycosylated D beta H being 15% lower. These data indicate that the oligosaccharide moieties present on D beta H do not play a role in catalysis. 相似文献
18.
Linkage analysis of the human dopamine beta-hydroxylase gene 总被引:2,自引:0,他引:2
The human gene for dopamine beta-hydroxylase (D beta H) has been mapped to chromosome 9q34. Using polymerase chain reaction amplification of exon 11 of the D beta H gene followed by digestion of the reaction products with FnuDII (BstUI), we detected a low-frequency restriction fragment length polymorphism (RFLP). The CEPH panel of family DNAs was genotyped for this RFLP, enabling us to determine the linkage relationships between D beta H and four other loci previously mapped to human chromosome 9q. We obtained two-point recombination frequencies (theta) between D beta H and arginosuccinate synthetase (theta = 0, LOD = 7.37), the ABO blood group locus (theta = 0, LOD = 4.5), CRI-P111 (theta = 0, LOD = 2.1), and D9S31 (theta = .06, LOD = 2.81). 相似文献
19.
J G Robertson P R Desai A Kumar G K Farrington P F Fitzpatrick J J Villafranca 《The Journal of biological chemistry》1990,265(2):1029-1035
Fifty-eight tryptic and Staphylococcus aureus V8 protease generated peptides from bovine dopamine beta-hydroxylase were isolated by reverse-phase high pressure liquid chromatography and sequenced. These peptide sequences were compared with the deduced amino acid sequences of bovine and human dopamine beta-hydroxylase obtained from the cloned cDNAs. Bovine peptide sequences had five differences with the sequence derived from the bovine cDNA, and four of the changes could be accounted for by a single base change in the DNA. N-terminal sequence analysis of the bovine enzyme indicated that it contained two N termini, one of which is 3 amino acids longer than the other and begins with the sequence Ser-Ala-Pro. The amino acid sequences deduced from the bovine and human cDNAs are 19 and 25 amino acids longer, respectively, and these additional amino acids represent leader peptide sequences. Two bovine peptide sequences contained glycosylation sites and gave positive tests for carbohydrate residues, and two others contained the consensus sequence for a glycosylation site but were negative in the carbohydrate test. The bovine enzyme contains 6 Trp, as compared with 7 in the bovine cDNA and 8 in the human cDNA. The protein and bovine cDNA contain 24 Tyr each, as compared with 26 in the human cDNA. These numbers indicate that the true epsilon 1% 280 = 8.95, and, therefore, that it is 28% lower than the previously determined value. The data also identify 5 His-containing regions that may be involved in Cu2+ coordination at the active site. 相似文献