首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Ayala FJ  Balakirev ES  Sáez AG 《Gene》2002,300(1-2):19-29
We have examined the patterns of polymorphism at two linked loci, Sod and Est-6, separated by nearly 1000 kb on the left arm of chromosome 3 of Drosophila melanogaster. The evidence suggests that natural selection has been involved in shaping the polymorphisms. At the Sod locus, a fairly strong (s>0.01) selective sweep, started ≥2600 years ago, increased the frequency of a rare haplotype, F(A), to about 50% frequency in populations of Europe, Asia, and the Americas. More recently, an F(A) allele mutated to an S allele, which has increased to frequencies 5–15% in populations of Europe, Asia and North America. All S alleles are identical (or very nearly) in sequence and differ by one nucleotide substitution (which accounts for the F→S electrophoretic difference) from F(A) alleles. At the Est-6 locus, the evidence indicates both directional and balancing selection impacting separately the promoter and the coding regions of the gene, with linkage disequilibrium occurring within each region. Some linkage disequilibrium also exists between the two genes.  相似文献   

2.
Balakirev ES  Balakirev EI  Ayala FJ 《Gene》2002,288(1-2):167-177
We have investigated nucleotide polymorphism at the esterase 6 gene (Est-6) gene, including the complete coding region (1686 bp), as well as the 5'-flanking (1183 bp) and 3'-flanking (193 bp) regions of the gene, in 30 strains of Drosophila melanogaster and in one strain of Drosophila simulans. The level of silent variation is similar in the coding and in the 3'-flanking region, but smaller in the 5'-flanking region. Strong linkage disequilibrium occurs within each region; and also, although less pronounced, between the 5'-flanking region and the rest of the gene, including the 3'-flanking region. We suggest that the pattern of nucleotide polymorphism of Est-6 may be shaped by: (1) directional and balancing selection acting on the promoter and the coding region; and (2) interactions between the two regions that involve variable degrees of hitchhiking. The patterns of linkage disequilibrium, as well as the statistics Z(nS) (Genetics 146 (1997)1197) and B and Q (Genet. Res. 74 (1999) 65), may be interpreted as there being multiple targets of selection within the gene. The previously reported Est-6 allozyme latitudinal clines may be accounted for by the interaction between selective processes in the promoter and coding regions.  相似文献   

3.
Balakirev ES  Ayala FJ 《Genetics》2003,165(4):1901-1914
We have investigated nucleotide polymorphism in the Est-6 gene region in four samples of Drosophila melanogaster derived from natural populations of East Africa (Zimbabwe), Europe (Spain), North America (California), and South America (Venezuela). There are two divergent sequence types in the North and South American samples, which are not perfectly (North America) or not at all (South America) associated with the Est-6 allozyme variation. Less pronounced or no sequence dimorphism occurs in the European and African samples, respectively. The level of nucleotide diversity is highest in the African sample, lower (and similar to each other) in the samples from Europe and North America, and lowest in the sample from South America. The extent of linkage disequilibrium is low in Africa (1.23% significant associations), but much higher in non-African populations (22.59, 21.45, and 37.68% in Europe, North America, and South America, respectively). Tests of neutrality with recombination are significant in non-African samples but not significant in the African sample. We propose that demographic history (bottleneck and admixture of genetically different populations) is the major factor shaping the nucleotide patterns in the Est-6 gene region. However, positive selection modifies the pattern: balanced selection creates elevated levels of nucleotide variation around functionally important (target) polymorphic sites (RsaI-/RsaI+ in the promoter region and F/S in the coding region) in both African and non-African samples; and directional selection, acting during the geographic expansion phase of D. melanogaster, creates an excess of very similar sequences (RsaI- and S allelic lineages, in the promoter and coding regions, respectively) in the non-African samples.  相似文献   

4.
Zurovcová M  Ayala FJ 《Genetics》2002,162(1):177-188
A new developmental gene family, recently identified in D. melanogaster, has been called imaginal disc growth factors (IDGF) because the proteins promote growth of cell lineages derived from imaginal discs. These are the first genes reported that encode polypeptide factors with mitotic activity in invertebrates. Characteristics such as similar arrangement of introns and exons, small size, and different cytological localization make this family an excellent candidate for evolutionary studies. We focus on the loci Idgf1 and Idgf3, two genes that possess the most distinctive features. We examine the pattern of intra- and interspecific nucleotide variation in the sequences from 20 isogenic lines of D. melanogaster and sequences from D. simulans and D. yakuba. While MK, HKA, and Tajima's tests of neutrality fail to reject a neutral model of molecular evolution, Fu and Li's test with outgroup and McDonald's test suggest that balancing selection is modulating the evolution of the Idgf1 locus. The rate of recombination between the two loci is high enough to uncouple any linkage disequilibrium arising between Idgf1 and Idgf3, despite their close physical proximity.  相似文献   

5.
Here we report the peculiarities of molecular evolution and divergence of paralogous heterochromatic clusters of the testis- expressed X-linked Stellate and Y-linked Su(Ste) tandem repeats. It was suggested that Stellate and Su(Ste) clusters affecting male fertility are the amplified derivatives of the unique euchromatic gene betaCK2tes encoding the putative testis-specific beta-subunit of protein kinase CK2. The putative Su(Ste)-like evolutionary intermediate was detected on the Y chromosome as an orphon outside of the Su(Ste) cluster. The orphon shows extensive homology to the Su(Ste) repeat, but contains several Stellate-like diagnostic nucleotide substitutions, as well as a 10-bp insertion and a 3' splice site of the first intron typical of the Stellate unit. The orphon looks like a pseudogene carrying a drastically damaged Su(Ste) open reading frame (ORF). The putative Su(Ste) ORF, as compared with the Stellate one, carries numerous synonymous substitutions leading to the major codon preference. We conclude that Su(Ste) ORFs evolved on the Y chromosome under the pressure of translational selection. Direct sequencing shows that the efficiency of concerted evolution between adjacent repeats is 5-10 times as high in the Stellate heterochromatic cluster on the X chromosome as that in the Y-linked Su(Ste) cluster, judging by the frequencies of nucleotide substitutions and single-nucleotide deletions.  相似文献   

6.
7.
8.
Genomic clones containing the full coding sequences of the two subunits of the Ca2+/calmodulin-stimulated protein phosphatase, calcineurin, were isolated from a Drosophila melanogaster genomic library using highly conserved human cDNA probes. Three clones encoded a 19.3-kDa protein whose sequence is 88% identical to that of human calcineurin B, the Ca(2+)-binding regulatory subunit of calcineurin. The coding sequences of the Drosophila and human calcineurin B genes are 69% identical. Drosophila calcineurin B is the product of a single intron-less gene located at position 4F on the X chromosome. Drosophila genomic clones encoding a highly conserved region of calcineurin A, the catalytic subunit of calcineurin, were used to locate the calcineurin A gene at position 21 EF on the second chromosome of Drosophila and to isolate calcineurin A cDNA clones from a Drosophila embryonic cDNA library. The structure of the calcineurin A gene was determined by comparison of the genomic and cDNA sequences. Twelve exons, spread over a total of 6.6 kilobases, were found to encode a 64.6-kDa protein 73% identical to either human calcineurin A alpha or beta. At the nucleotide level Drosophila calcineurin A cDNA is 67 and 65% identical to human calcineurin A alpha and beta cDNAs, respectively. Major differences between human and Drosophila calcineurins A are restricted to the amino and carboxyl termini, including two stretches of repetitive sequences in the carboxyl-terminal third of the Drosophila molecule. Motifs characteristic of the putative catalytic centers of protein phosphatase-1 and -2A and calcineurin are almost perfectly conserved. The calmodulin-binding and auto-inhibitory domains, characteristic of all mammalian calcineurins A, are also conserved. A remarkable feature of the calcineurin A gene is the location of the intron/exon junctions at the boundaries of the functional domains and the apparent conservation of the intron/exon junctions from Drosophila to man.  相似文献   

9.
10.
Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.  相似文献   

11.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

12.
Analysis of total Drosophila melanogaster DNA by genomic blot hybridization indicates that two cytochrome c-like sequences exist in the Drosophila genome. These two sequences, DC3 and DC4, have been isolated from a Charon 4A-D. melanogaster genomic library. DC3 and DC4 are located within a 4 kb region of DNA, at position 36A 10-11, on the left arm of chromosome 2. The nucleotide sequence of these two clones has been determined. Both DC3 and DC4 can encode functional cytochrome c proteins. The polypeptide sequences predicted by these two genes, however, differ at 32 amino acid residues. DC4 is expressed at varying, but relatively high levels throughout Drosophila development. In contrast, DC3 is expressed at constant, but relatively low levels throughout development.  相似文献   

13.
A total of 752 odorant receptor (Or) genes, including pseudogenes, were identified in 11 Drosophila species and named after their orthologs in Drosophila melanogaster. The 813 Or genes, including 61 from D. melanogaster, were classified into 59 orthologous groups that are well supported by gene phylogeny. By reconciling with the gene family phylogeny, we estimated the number of gene duplication/loss events and intron gain/loss events in the species phylogeny. We found that these events are particularly frequent in Drosophila grimshawi, Drosophila willistoni, and obscura group. More than half of the duplicated genes stay as tandem arrays, whose size range from 2 to 8. These genes vary in sequence and some likely underwent positive selection, indicating that the gene duplication was important for flies to acquire new olfactory functions. We hypothesize that Or genes conferred the basic olfactory repertoire to ancestral flies before the speciation of the Drosophila and Sophophora subgenera about 40 Mya. This repertoire has been largely maintained in the current species, whereas lineage-specific gene duplication seems to have led to additional specialization in some species in response to specific ecological conditions.  相似文献   

14.
15.
Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (d(S) < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster.  相似文献   

16.
The nucleotide sequences of the 5'-flanking regions of the duplicated Amy genes in eight sibling species belonging to the melanogaster species subgroup are analyzed. In Drosophila melanogaster, a region of about 450 bp immediately upstream of the translation initiation site of the two paralogous genes (the proximal and distal genes) has sequence similarities. However, we could not detect any significant sequence similarity in the region more upstream than -450. This result indicates that the coding regions of the ancestral Amy gene were duplicated together with 450 bp of the 5'-flanking region as one unit. Multiple alignment of these 450-bp sequences in the proximal and distal genes of all eight species revealed a mosaic pattern of highly conserved and divergent regions. The conserved regions included almost all the putative regulatory elements identified in previous analyses of the sequences. A phylogenetic analysis of the aligned sequences shows that these 450-bp sequences are clustered into the proximal and the distal groups. As a whole, the divergence between groups in this region is very large in contrast to that in the coding regions. Based on the divergence between groups, the 450-bp region is divided into two subregions. We found that the ratios of the divergence between groups to that within groups differ in the two subregions. From these observations, we discuss a possibility of positive selection acting on the subregion immediately upstream of the Amy coding region to cause divergence of regulatory elements of the paralogous genes.   相似文献   

17.
18.
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.  相似文献   

19.
Insects respond to septic infection in part by producing a suite of antimicrobial peptides that may be subject to host-pathogen coevolutionary dynamics. In order to infer population genetic forces acting on Drosophila antibacterial peptide genes, we examine global properties of polymorphism and divergence in the Drosophila melanogaster defensin, drosocin, metchnikowin, attacin C, diptericin A, and cecropin A, B, and C genes. As a functional class, antibacterial peptides exhibit low levels of interspecific amino acid divergence. There are multiple amino acid polymorphisms segregating within D. melanogaster, however, a high proportion of which change the charge or polarity of the variable residue. These polymorphisms are particularly prevalent in processed signal and propeptide domains. We find that models of coevolutionary "arms races" and selectively maintained hypervariability do not adequately describe the population dynamics of mature antibacterial peptides in D. melanogaster, but that a highly significant excess of high-frequency derived polymorphisms coupled with substantial intralocus linkage disequilibrium suggests that positive selection may act on antibacterial peptide genes. Some attributes of the data may be consistent with a simple demographic model of population founding followed by expansion, but departures from the equilibrium null tend to be more pronounced in the peptide genes than at other loci around the genome.  相似文献   

20.
Transfer RNA genes of Drosophila melanogaster.   总被引:2,自引:3,他引:2       下载免费PDF全文
Three recombinant plasmids containing randomly sheared genomic D. melanogaster tRNAs have been identified and characterized in detail. One of these, the plasmid 14C4, has a D. melanogaster (Dm) DNA segment of 18 kb, and has three tRNA2Arg and two tRNAAsN genes. The second plasmid, 38B10, has tRNAHis genes, while the third plasmid, 63H5, contains coding sequences for tRNA2Asp. The Dm DNA segments in each recombinant plasmid are derived from unique cytogenetic loci. 14C4 is from 84 F, 38B10 is from 48 F and 63H5 is from 70 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号