首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 440 skulls of common shrews, Sorex araneus, from Germany and Europe (Croatia, Hungary, Austria, and Norway) were studied. The material represented six chromosomal races (Ulm, Laska, Drnholec, Mooswald, Jütland, and Abisko) assignable to the Western European and Northern European karyotypic groups. The race of a few samples was not determined. Twenty-one linear measurements were taken on skulls and mandibles and used in this study. Pearson correlations and multiple linear regressions were used to see the relationship of the cranial variables to altitude, latitude, the chromosomal race, and the geographic location. The results from the tested samples differed; the most negative correlations to latitude were found in the samples assigned to the Western European karyotypic group (WEK), the least negative ones in the samples of the Ulm race. These results indicate the converse of Bergmann's rule. But taking into consideration all the samples of the different karyotypic groups across Europe, the correlations to latitude included positive ones, which would indicate that Sorex follows Bergmann's rule in some of the variables. The studied material of different karyotypic groups could not be differentiated in discriminant analyses. The separation of the studied races within the WEK alone was slightly better, but about 30 % of ungrouped cases remained. Only the separation of the regional samples within one chromosomal race revealed better results but was still very different between the races. This indicates that within the races, regional differences might be strong enough for a separation of the samples and that within a karyotypic group, and even more so across karyotypic groups, regional differences conceal racial differences.  相似文献   

2.
We review data on the chromosomal variation in the common shrewSorex araneus Linnaeus, 1758 in the context of recent molecular findings. The article considers all aspects of chromosomal variation in this species: within-population polymorphism, karyotypic races, hybrid zones between karyotypic races, chromosomal evolution, and speciation. The recent molecular data provide vital information on different evolutionary processes such as inbreeding, genetic drift, population expansion, and selective forces. In particular, the molecular data challenge traditional models for the fixation of chromosomal variants, provide new insights into the manner of spread of such variants once they are formed and allow in-depth analysis of gene exchange between karyotypic races.  相似文献   

3.
The common shrew, Sorex araneus, exhibits an unusually high level of karyotypic variation. Populations with identical or similar karyotypes are defined as chromosome races, which are, in turn, grouped into larger evolutionary units, karyotypic groups. Using six microsatellite markers, we investigated the genetic structure of a hybrid zone between the Sidensjö and Abisko chromosome races, representatives of two distinct karyotypic groups believed to have been separated during the last glacial maximum, the West European karyotypic group (western group) and the North European karyotypic group (northern group), respectively. Significant FST values among populations suggest some weak genetic structure. All hierarchical levels show similar levels of genetic differentiation, equivalent to levels of genetic structure in several intraracial studies of common shrew populations from central Europe. Notably, genetic differentiation was of the same order of magnitude between and within karyotypic groups. Although the genetic differentiation was weak, the correlation between genetic and geographical distance was positive and significant, suggesting that the genetic variation observed between populations is a function of geographical distance rather than racial origin. Hence, considerable chromosomal differences do not seem to prevent extensive gene flow.  相似文献   

4.
The common shrew is subdivided into 74 chromosomal races, widely distributed in the postglacial area from the Britain Islands to Lake Baikal. Based on 1969 karyotypes from 216 localities, we present for the first time a map of ranges of 25 chromosomal races (except the Altai race) currently known in Russia. We revealed two centers of high karyotypic diversity: the western (near Baltic Sea) and the eastern (near Baikal Lake). The studied races were categorized as small-, medium-, and large-range races, and small-range races concentrated around those two centers of karyotypic diversity. We did not find any significant association between race range size and ecological zone, latitude, or the ambient temperature. Physical barriers, such as Ural Mountain or rivers, do not limit race distribution. The width of rivers that divide a range of a single race or ranges of two different races does not differ. We supposed that the occupation of an area by a race could limit the invasion of a different race from an adjacent area and expansion of its range, thus contributing to race parapatric distribution alone without additional effects of physical barriers. Based on karyotype similarity and geographic localization, we combined races into four “karyotypic chains,” in which the races can be derived from one another consequently by a single chromosomal translocation. The present distribution of the common shrew races in Russia supports the idea that it has resulted from recolonization from refugia governed by the density-dependent processes.  相似文献   

5.
The common shrew, Sorex araneus, has one of the most variable karyotypes among mammals, displaying numerous chromosome races throughout its distribution. The six chromosome races present in Sweden can be categorized in two different karyotypic groups, the west and north European karyotypic groups (western and northern). Three races belonging to the western group are considered to have arisen through whole arm reciprocal translocations (WARTs). Race formation through this process requires a bottleneck event. In the present study we sequenced a part of the mitochondrial DNA (mtDNA) genome to investigate molecular differences between the chromosome races in Sweden. We found no mtDNA differentiation between the mainland chromosome races or the karyotypic groups. Genetic variation is as large between populations within a race as between populations among the races or karyotypic groups, suggesting that the karyotypic groups might have originated in a common glacial refugium. The noticeable exception is the Oland race, which shows higher mtDNA diversity compared to the other Swedish races, indicating a divergent origin difficult to explain. Mitochondrial DNA variation in Sweden suggests that most haplotypes arose in situ and that the populations has undergone a rapid size expansion. Altogether, the mtDNA data are in agreement with the WART hypothesis, which still holds as the most plausible variant of karyotype evolution for three of the chromosome races of the common shrew in Sweden.  相似文献   

6.
Abstract Tension zones are maintained by the interaction between selection against hybrids and dispersal of individuals. Investigating multiple hybrid zones within a single species provides the opportunity to examine differences in zone structure on a background of differences in extrinsic factors (e.g., age of the zone, ecology) or intrinsic factors (e.g., chromosomes). The New Zealand tree weta Hemideina thoracica comprises at least eight distinct chromosomal races with diploid numbers ranging from 2n = 11 (XO) to 2n = 23 (XO). Five independent hybrid zones were located that involve races differing from one another by a variety of chromosomal rearrangements. The predicted negative correlation between extent of karyotypic differentiation (measured in terms of both percent of genome and number of rearrangements) and zone width was not found. Conversely, the widest zones were those characterized by two chromosome rearrangements involving up to 35% of the genome. The narrowest zone occurred where the two races differ by a single chromosome rearrangement involving approximately 2% of the genome. The five estimates of chromosomal cline width ranged from 0.5 km to 47 km. A comparative investigation of cline width for both chromosomal and mitochondrial markers revealed a complex pattern of zone characteristics. Three of the five zones in this study showed cline concordance for the nuclear and cytoplasmic markers, and at two of the zones the clines were also coincident. Zones with the widest chromosomal clines had the widest mitochondrial DNA clines. It appears that, even within a single species, the extent of karyotypic differentiation between pairs of races is not a good predictor of the level of disadvantage suffered by hybrids.  相似文献   

7.
There are at least 24 different karyotypic races of house mouse in the central Alps, each characterized by a different complement of ancestral acrocentric and derived metacentric chromosomes; altogether 55 different metacentric chromosomes have been described from the region. We argue that this chromosome variation largely arose in situ. If these races were to make contact, in most cases they would produce F1 hybrids with substantial infertility (sometimes complete sterility), due to nondisjunction and germ cell death associated with the formation of long-chain and/or ring configurations at meiosis. We present fertility estimates to confirm this for two particular hybrid types, one of which demonstrates male-limited sterility (in accordance with Haldane's Rule). As well as a model for speciation in allopatry, the Alpine mouse populations are of interest with regards speciation in parapatry: we discuss a possible reinforcement event. Raciation of house mice appears to have happened on numerous occasions within the central Alps. To investigate one possible source of new karyotypic races, we use a two-dimensional stepping stone model to examine the generation of recombinant races within chromosomal hybrid zones. Using field-derived ecological data and laboratory-derived fertility estimates, we show that hybrid karyotypic races can be generated at a reasonable frequency in simulations. Our model complements others developed for flowering plants that also emphasize the potential of chromosomal hybrid zones in generating new stable karyotypic forms.  相似文献   

8.
The species of the common shrew (Sorex araneus) group are morphologically very similar but exhibit high levels of karyotypic variation. Here we used genetic variation at 10 microsatellite markers in a data set of 212 individuals mostly sampled in the western Alps and composed of five karyotypic taxa (Sorex coronatus, Sorex antinorii and the S. araneus chromosome races Cordon, Bretolet and Vaud) to investigate the concordance between genetic and karyotypic structure. Bayesian analysis confirmed the taxonomic status of the three sampled species since individuals consistently grouped according to their taxonomical status. However, introgression can still be detected between S. antinorii and the race Cordon of S. araneus. This observation is consistent with the expected low karyotypic complexity of hybrids between these two taxa. Geographically based cryptic substructure was discovered within S. antinorii, a pattern consistent with the different postglaciation recolonization routes of this species. Additionally, we detected two genetic groups within S. araneus notwithstanding the presence of three chromosome races. This pattern can be explained by the probable hybrid status of the Bretolet race but also suggests a relatively low impact of chromosomal differences on genetic structure compared to historical factors. Finally, we propose that the current data set (available at http://www.unil.ch/dee/page7010_en.html#1) could be used as a reference by those wanting to identify Sorex individuals sampled in the western Alps.  相似文献   

9.
The Western European house mouse, Mus musculus domesticus, is well‐known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.  相似文献   

10.
Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.  相似文献   

11.
Drosophila nasuta (2n = 8) and Drosophila albomicans (2n = 6) are cross-fertile allopatric sibling chromosomal races of the nasuta subgroup of Drosophila. Hybrids of these races can be maintained for any number of generations. Some of the introgressed hybrid lineages of D. nasuta and D. albomicans, after passing through a transient phase of karyotypic polymorphism, ended up with a stable karyotype whose composition is different from those of the parental races. Such hybrid populations were called cytoraces, in which the chromosomes of D. nasuta and D. albomicans are represented in different combinations. The karyotypic composition of 16 such cytoraces have been presented and discussed with reference to evolutionary strategies such as balancing selection, directional selection, and sex-specific effect on different components of the evolving karyotypes.  相似文献   

12.
Fluctuating asymmetry (FA) of tooth traits has been reported to be increased in Down syndrome patients as well as hybrids between chromosomal races of the house mouse differing in several Robertsonian (Rb) fusions. Developmental stability, assessed by FA, is thus thought to be impaired by spontaneous chromosomal abnormality or by chromosomal heterozygosity. Although the effect of a single fusion on developmental stability could theoretically be expected, it has never been documented. Crosses involving two chromosomal races of the house mouse diverging for one Rb fusion were performed to assess developmental stability in parental homozygous races as well as in their hybrids. Moreover, the occurrence of a spontaneous chromosomal mutation (WART type-b) allowed us to study the instantaneous effect of such a translocation on developmental stability. No difference in fluctuating asymmetry levels was detected among the groups considered in this study. This result suggested that a single stable or spontaneous balanced structural rearrangement did not inherently disturb developmental stability. In addition, the differential effect on developmental stability of one versus many heterozygous Rb fusions highlights the role of their quantitative accumulation in the disruption of coadaptation in chromosomal hybrids.  相似文献   

13.
The chromosomal radiation of the house mouse in the island of Madeira most likely involved a human-mediated colonization event followed by within-island geographical isolation and recurrent episodes of genetic drift. The genetic signature of such processes was assessed by an allozyme analysis of the chromosomal races from Madeira. No trace of a decrease in diversity was observed suggesting the possibility of large founder or bottleneck sizes, multiple introductions and/or a high post-colonization expansion rate. The Madeira populations were more closely related to those of Portugal than to other continental regions, in agreement with the documented human colonization of the island. Such a Portuguese origin contrasts with a study indicating a north European source of the mitochondrial haplotypes present in the Madeira mice. This apparent discrepancy may be resolved if not one but two colonization events took place, an initial north European introduction followed by a later one from Portugal. Asymmetrical reproduction between these mice would have resulted in a maternal north European signature with a nuclear Portuguese genome. The extensive chromosomal divergence of the races in Madeira is expected to contribute to their genic divergence. However, there was no significant correlation between chromosomal and allozyme distances. This low apparent chromosomal impact on genic differentiation may be related to the short time since the onset of karyotypic divergence, as the strength of the chromosomal barrier will become significant only at later stages.  相似文献   

14.
During postglacial colonization, populations that diverged in different refugia produced a patchwork of genomes, often delimited with sharp hybrid zones. The outcome of hybridization following the secondary contact of two genetically distinct populations is hard to predict. In this context, the present study investigated the genetic structure of the hybrid zone between the Drnholec and Białowieża chromosome races of the common shrew ( Sorex araneus ) in Poland using biparentally inherited (seven autosomal microsatellites) and uniparentally inherited (Y-linked microsatellite and mtDNA) molecular markers. On the basis of diagnostic chromosomes, the Drnholec and Białowieża races were classified to different karyotypic groups, which were believed to have independent glacial histories. It was found that genetic differentiation between the Drnholec and Białowieża races was weak and nonsignificant with respect to all molecular markers. However, these results are in contrast with the chromosomal structure of this hybrid zone. The very sharp frequency clines of the diagnostic chromosomes strongly suggest that gene flow between the Drnholec and Białowieża races was reduced. Nonsignificant correlations between genetic differentiation and both the presence of an environmental barrier and geographical distance reveal that only differences in karyotypes might be a reason for limited gene exchange between the races. It is assumed that a lack of molecular differences between the Drnholec and Białowieża races results from a shared ancestral variation.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 79–90.  相似文献   

15.
The role of chromosomal rearrangements in disturbing reproduction in hybrids between karyotypically differentiated groups is fairly well documented. However, the effect of chromosomal changes at other phenotypic levels is rarely considered. In Tunisia, natural chromosomal hybrids of the house mouse exhibit developmental instability, suggesting that a high karyotypic heterozygosity might also affect developmental processes. If this is true, we predict that, in this species, developmental instability should arise in hybrids between any populations with a high chromosomal differentiation. To test this hypothesis, we compare the results obtained in Tunisian mice with those obtained in the present analysis on Madeiran mice. Both systems of races have similar levels of chromosomal differentiation (nine Robertsonian fusions). Unlike Tunisian mice, hybrids in Madeira display a similar level of developmental instability as parental groups. This indicates that structural heterozygosity per se does not necessarily impair developmental stability. It further suggests that chromosomal fusions are not all equivalent in their phenotypic effects, and that the identity of each fusion should be taken into account.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 33–43.  相似文献   

16.
Isozymatic data taken from 67 Guatemalan collections of maize were subjected to numerical taxonomic analyses to elucidate systematic relationships among the 19 maize races and subraces described for Guatemala by Wellhausen et al. As with Bolivian and Mexican races, isozymatic variation in Guatemalan maize was strongly associated with altitude. Guatemalan lowland races were in general isozymatically distinct from races of higher elevations. Two middle elevation Guatemalan races proved difficult to place taxonomically. As a group, Guatemalan highland races were isozymatically more diverse than races from lower elevations, and were rather weakly differentiated from Mexican highland races. Notably, variational patterns evident from phenetic analyses of isozyme data were generally congruent with those apparent in phylogenetic analyses. The data reported here, and in earlier studies, suggested that divergent combinations of isozymatic, karyotypic, and morphological features have evolved in local maize races from Mexico, Guatemala, and Bolivia, perhaps as the result of the different selective regimens indigenous cultivators have imposed on different regional phylogenetic lineages.  相似文献   

17.
This review summarizes the available data on multilevel differentiation in the araneus species group of the genus Sorex (Eulipotyphla, Mammalia). Communication 1 gives basic information about the biology and morphological and karyotypic differentiation of some species belonging to this genus, as well as about the subdivision of one of the species, the common shrew (Sorex araneus), into intraspecific chromosomal races. The list of the 75 races known so far is included (26 of them dwell in Russia).  相似文献   

18.
rates of robertsonian chromosomal evolution in the Western European house mouse are about two orders of magnitude greater than for most other mammals. This has resulted in a remarkable diversity of karyotypic races in a very short period of time. Recent studies are beginning to shed light on the relative contributions of mutation, drift, selection and meiotic drive in producing this pattern.  相似文献   

19.
In wild populations of the house mouse from Tunisia, fluctuating asymmetry and character size of tooth traits were compared between chromosomal races (2n = 40, all acrocentric standard karyotype, and 2n = 22, with nine fixed Robertsonian fusions) and their natural hybrids. Developmental stability was impaired in hybrids compared to both parental groups. Because genetic divergence measured by allozyme markers was low, genomic incompatibilities were not expected between the chromosomal races. This suggests that differentiation of gene systems specifically involved in development may have occurred between the chromosomal races. Support for the latter was found in the study of character size which showed that the 2n = 22 mice had smaller teeth than either the hybrid or the standard mice. The study of Tunisian chromosomal races thus shows that chromosomal evolution may lead to important changes in coadapted gene systems without involving extensive genic differentiation.  相似文献   

20.
The Robertsonian fusion is a common chromosomal mutation among mammal species and is especially prevalent in the West European house mouse, Mus musculus domesticus. More than 40 races of the house mouse exist in Europe, including the famous “tobacco mouse” (Poschiavo race) of Val Poschiavo, Switzerland. Documented here is the discovery of an extreme case of karyotypic variation in the neighboring Upper Valtellina, Italy. In a 20-km stretch of the valley, 32 karyotypes were observed, including five chromosomal races and 27 hybrid types. One previously unknown race is reported, the “Mid Valtellina” race, with a diploid number of 2n = 24 and the Robertsonian fusions Rb(1.3), Rb(4.6), Rb(5.15), Rb(7.18), Rb(8.12), Rb(9.14), Rb(11.13), and Rb(16.17). The Poschiavo race (2n = 26), Upper Valtellina race (2n = 24), Lower Valtellina race (2n = 22) and all-acrocentric race (2n = 40) were also present. The races form a patchy distribution, which we term a “mottled hybrid zone.” Geographical position, isolation, extinction, recolonization, and selection against hybrids are all believed to be instrumental in the origin and evolution of this complex system. Previous studies of house mice from Upper Valtellina indicated that two of the races in the valley (the Upper Valtellina and Poschiavo races) may have speciated in the village of Migiondo. We discuss the possibility that there may have been a reinforcement event in this village.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号