首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shevelev IA 《Bio Systems》2000,58(1-3):211-217
Under stimulation of the receptive fields (RF) of neurons in the cat area 17 by flashing Y-like figures of different shape and orientation, the sensitivity to these figures was revealed in 72% of the studied cells, while 62% of units were sensitive to cross-like figures as well. Tuning to Y-like figures was typically selective to their shape and orientation, but in some cases it was invariant to these features. Response magnitudes to single bar, Y-like figure and cross were positively correlated. Simulation showed that the disinhibition might be a sufficient mechanism for effective detection of Y-like figures in a classical receptive field.  相似文献   

2.
The responses to flashing single light bars of different orientation and to cruciform images (CI) were compared in 9 neurons of the cat striate cortex possessing high specific sensitivity to CI, during local adaptation of various receptive field (RF) zones. In most neurons, a two- to threefold reduction in the response to CI with a constantly present bar of optimum or orthogonal orientation, if compared with a response to the figure consisting of two flashing bars, was found. Responses to the CI including an adaptation bar were often increased, if compared with those observed at usual orientation tuning. The role of a cross-orientation inhibition in the formation of a selective sensitivity to CI in the neurons of the visual cortex is discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 134–139, March–April, 1995.  相似文献   

3.
In the primary visual cortex of an immobilized awake cat, nearly one-third of the neurons studied (8 out of 22) were found to respond to flashing cruciform light stimuli 1.5–4 times better than to single stimulations with the strips of preferred orientation. It is suggested that such neurons can detect angles and line intersections.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 362–364, September–October, 1993.  相似文献   

4.
Many neurons in the cat primary visual cortex reveal sensitivity to cruciform and corner figures as well as to local orientation discontinuities. We investigated this sensitivity in 85 V1 neurons before and after the local blockade of GABA(A)ergic inhibition by microiontophoretic application of bicuculline and observed two opposite effects: a decrease or disappearance of sensitivity to crosses in about half of the neurons and its increase or appearance in about one third of the units. The results indicate substantial and drastically different contribution of intracortical inhibition to sensitivity to line-crossings in the visual cortical neurons. Some possible mechanisms of this difference are discussed.  相似文献   

5.
In acute experiments with narcotized and paralyzed cats, we studied responses of 74 striate neurons to cross-like figure under synchronous and asynchronous presentation of its lines. The aim of the study was to characterize the temporal course of interaction between three RF zones: main excitatory, end-inhibitory, and side disinhibitory ones. Previously we have found that this interaction is responsible for sensitivity to a cross in near 3/4 of cat striate cells with such sensitivity. In neurons with sensitivity to a cross, we found two types of temporal interaction between zones of RF. In the 1st type cells (14/23), the response significantly increased if the disinhibitory and the main excitatory zones of RF were stimulated simultaneously. Neurons of the 2nd type (9/23) revealed opposite temporal function: synchronous activation of RF zones evoked a minimal response. Simulation shows that the 1st type of behavior is connected with disinhibitory mechanism, while that of the 2nd type--with combination of this mechanism with convergence of orientation detectors of the previous functional level.  相似文献   

6.
Dynamics of tuning to orientation of flashing light bar and to orientation of cross-like figure was studied by a temporal slices method in 87 neurons of the cat primary visual cortex. Tuning was plotted by spikes number in the entire response and in its successive fragments with a step of 20 ms. It was found that successive dynamic shift of preferred orientation of a bar was typical for 87% units, white such shift of preferred orientation of a cross was met in 75% of cases. Comparison of tuning dynamics for bar and cross allowed to separate units into three groups: the first one (58.6% of cases) with larger dynamic shift of a bar preferred orientation then of a cross (74.9 +/- 5.8 degrees [symbol: see text] 29.8 +/- 4.1 degrees, correspondingly, p < 0.00001), the second group (21.5%) with opposite effect (24.2 +/- 5.2 degrees and 69.2 +/- 10.0 degrees, p < 0.0002) and the third group (19.8%) without significant shift of preferred orientation of bar and cross and without difference in their dynamics. Possible mechanisms of the preferred orientation dynamics and its difference for bar and cross are discussed.  相似文献   

7.
A suggestion about the leading role of GABA-induced intracortical inhibition in the dynamics of orientation tuning (OT) of the cat striate cortical neurons was tested in acute experiments before and during the local blockade of their inhibition by iontophoretic application of bicucculine. In the course of the investigation of these dynamics, with the use of a temporal scanning method, two types of neurons differing in the inhibition blockade-induced OT changes were found. In the neurons of the first type (57%), bicuculline induced the OT dynamics or enhanced it, if it pre-existed before the bicuculline application. In the neurons of the second type (43%), bicuculline strongly reduced or eliminated the dynamic shift of a preferred orientation. These results mean that under normal conditions the inhibition stabilizes and sharpens OT in some cells, while in other cells, in contrast, it causes the OT dynamics. The following mechanisms may underlie the observed effects: an elimination of the inhibition originating from lateral non-isoorientational excitatory inputs of a receptive field; an inhibition of these inputs via the adjacent interneurons activated by a powerful discharge of the examined neuron; a long-term afterhyperpolarization of the neuron, and the dynamics of the excitatory and inhibitory zones of the receptive field.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 100–109, March–April, 1995.  相似文献   

8.
During monaural stimulation, studies have been made of impulse reactions in neurons from the cochlear nucleus and inferior colluculus to changes in the phase value (psi) of one of the harmonics in two-tone signals. It was shown that about 70% of the neurons from the cochleaur nucleus with a tonic discharge pattern may sharply change their activity (from maximum one up to a complete inhibition) due to changes in psi value. Unlike the cochlear nucleus units, neurons from the inferior colliculus change their tonic or burst-like activity rather seldomly and to a slight extent. At the same time, their phasic on- and especially off-responses exhibit high sensitivity to changes in psi value.  相似文献   

9.
10.
In the cat primary visual cortex (area 17) the response magnitude and latency were studied in 280 neurons sensitive to bar or cross-like-figure. Under natural conditions half of the studied 195 cells preferred bar (first group) or cross (second group). In the first group responses to both figures were near equal, while in the second one cross evoked much stronger response. Response latencies with the optimal bar in the first group were shorter than in the second group and longer to a cross than to a bar while in the second group they were considerably shorter to a cross than to bar. Under local blockage of GABA-ergic inhibition by microiontophoretic application of bicuculline about one-fourth of 85 neurons generated greater responses and were bar-sensitive irrespective to presence or absence of inhibition. Other neurons were cross-sensitive at least in one of the conditions (with and/or without of inhibition). They responses grew under bicuculline action relatively more than in the first group. Significance of the data obtained for tuning to image features and temporal succession of their detection is discussed.  相似文献   

11.
The responses to moving and stationary stimuli of 27 cat's striate cortical units were studied. Two stationary light bars located in different parts of the receptive field were used. The order of presentation and the time-interval between the stimuli varied; so, the presentation of a pair of stationary stimuli was an analogue of a moving stimulus.It was shown that responses occurred in neurons previously unresponsive to stationary stimuli when two stationary stimuli were presented successively in certain order. In the direction-sensitive units an asymmetry of the temporal course of the inhibitory processes was observed. The inhibitory zone located on the side of the preferred direction of movement was characterized by an early inhibitory phase followed by a phase of disinhibition and by a second inhibitory phase. For the inhibitory zone located on the side of the null direction no disinhibitory phase was demonstrated.The significance of the spatial and temporal characteristics of the receptive field for the appearance of responses to movement, the directional sensitivity and the velocity tuning in striate neurons is discussed.  相似文献   

12.
A set of impulsive transient signals has been synthesized for earphone delivery whose waveform and amplitude spectra, measured at the eardrum, mimic those of sounds arriving from a free-field source. The complete stimulus set forms a "virtual acoustic space" (VAS) for the cat. VAS stimuli are delivered via calibrated earphones sealed into the external meatus in cats under barbiturate anesthesia. Neurons recorded extracellularly in primary (AI) auditory cortex exhibit sensitivity to the direction of sound in VAS. The aggregation of effective sound directions forms a virtual space receptive field (VSRF). At about 20 dB above minimal threshold, VSRFs recorded in otherwise quiet and anechoic space fall into categories based on spatial dimension and location. The size, shape and location of VSRFs remain stable over many hours of recording and are found to be shaped by excitatory and inhibitory interactions of activity arriving from the two ears. Within the VSRF response latency and strength vary systematically with stimulus direction. In an ensemble of such neurons these functional gradients provide information about stimulus direction, which closely accounts for a human listener's spatial acuity. Raising stimulus intensity, introducing continuous background noise or presenting a conditioning stimulus all influence the extent of the VSRF but leave intact the gradient structure of the field. These and other findings suggest that such functional gradients in VSRFs of ensembles of AI neurons are instrumental in coding sound direction and robust enough to overcome interference from competing environmental sounds.  相似文献   

13.
14.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

15.
16.
17.
Disgust has been described as the most primitive and central of emotions. Thus, it is not surprising that it shapes behaviors in a variety of organisms and in a variety of contexts--including homo sapien politics. People who believe they would be bothered by a range of hypothetical disgusting situations display an increased likelihood of displaying right-of-center rather than left-of-center political orientations. Given its primal nature and essential value in avoiding pathogens disgust likely has an effect even without registering in conscious beliefs. In this article, we demonstrate that individuals with marked involuntary physiological responses to disgusting images, such as of a man eating a large mouthful of writhing worms, are more likely to self-identify as conservative and, especially, to oppose gay marriage than are individuals with more muted physiological responses to the same images. This relationship holds even when controlling for the degree to which respondents believe themselves to be disgust sensitive and suggests that people's physiological predispositions help to shape their political orientations.  相似文献   

18.
Two methods are described for the immunocytochemical demonstration of immunoreactive gamma-aminobutyric acid (GABA) in the visual cortex of the cat, an area that contains several types of GABAergic neurons and requires combined methods for their characterization. The first method is illustrated by a representative example of a Golgi-impregnated and gold-toned interneuron of the "bitufted" type situated in layer VI and having an ascending axon. After recording the three-dimensional features of the cell, semithin (0.5 micron) sections of the perikaryon were cut and GABA was demonstrated in the cell body by the unlabeled antibody enzyme method. While immunocytochemistry was used to determine the probable transmitter of the neuron, Golgi-impregnation of the same cell was used to identify its neuronal type. Since aldehyde-osmium fixation was used, further electron microscopic (EM) analysis of the neuron's synaptic connections was possible. The second procedure demonstrated GABA in EM sections of aldehyde-osmium-fixed cortex using protein A-gold as an immunocytochemical marker. Immunoreactivity was found in certain neurons, dendrites, axons, and boutons forming type II synaptic contacts that from previous studies have been thought to be GABAergic. Thus ultrastructural analysis using optimal conditions can now be supplemented with the identification of the transmitter in the same section.  相似文献   

19.
Dynamics of tuning to the shape of cross-like figure flashed in receptive field was studied in 83 striate neurons by the method of temporal slices. Tuning was estimated by the total number of spikes in the response and by this number in successive fragments of the response with 20 ms steps. It was found that only in 11.7% cases neurons showed stable tuning to the same shape of the preferred figure (an angle between its lines), in other cases (88.3%) during response generation this tuning changes being one-phase (7.2%) or two-phase (27.0%), or undulatory (54.1%). Different dynamical reorganization of receptive field zones is discussed as a possible mechanism of the revealed effects as well as their correlation with previously described dynamics of tuning to orientation of a single bar and a cross in striate cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号