首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that in cells ectopically expressing temperature‐sensitive p53135val mutant, p53 formed tight complexes with poly(ADP‐ribose) polymerase (PARP). At elevated temperatures, p53135val protein, adopting the mutant phenotype, was localized in the cytoplasm and sequestered the endogenous PARP. To prove whether an excess of p53135val protein led to this unusual intracellular distribution of PARP, we have established cell lines overexpressing p53135val + c‐Ha‐ras alone or in combination with PARP. Interestingly, immunostaining revealed that PARP is sequestered in the cytoplasm by mutant p53 in cells overexpressing both proteins. Simultaneous overexpression of PARP had no effect on temperature‐dependent cell proliferation and only negligibly affected the kinetics of p53‐mediated G1 arrest. However, if the cells were completely growth arrested at 32°C and then shifted up to 37°C, coexpressed PARP dramatically delayed the reentry of transformed cells into the cell cycle. Even after 72 h at 37°C the proportion of S‐phase cells was reduced to 20% compared to those expressing only p53135val + c‐Ha‐ras. The coexpressed PARP stabilized wt p53 protein and its enzymatic activity was necessary for stabilization. J. Cell. Biochem. 80:85–103, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

2.
We investigated the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53 using two different approaches. In the first approach, we used primary and immortalized cells derived from wt and PARP-1 -/- mice. We examined whether PARP-1 deficiency would affect the expression of the wild-type (wt) p53 protein. The inactivation of the PARP-1 gene markedly affected the constitutive expression of the wt p53 protein. Interestingly, only the regularly spliced form of wt p53 was reduced to a barely detectable level in consequence to an approximately 8-fold shortening of its half-life, whereas the level of alternatively spliced p53 remained unchanged. Moreover, reconstitution of cells lacking the PARP-1 gene with the human counterpart restored the normal stability of the regularly spliced p53 protein. In the second approach, we performed experiments with c-Ha-ras transformed primary rat cells overexpressing the p53135val mutant alone or in combination with PARP-1. The advantage of this temperature sensitive p53135val mutant is its oncogenic character at 37 degrees C, connected with cytoplasmic localization of p53, and its tumor suppressor activity at 32 degrees C, accompanied by p53 translocation into the nucleus. No noticeable differences in proliferation and G1 accumulationwere observed between cells expressing p53135val with or without PARP-1. On the other hand, a comparison of the recovery of G1 arrested cells after a shift up to 37 degrees C for both cell lines showed dramatic differences in the kinetics. While cells expressing p53135val rapidly reached the characteristic S-phase level after a shift up to basal temperature, cells additionally expressing PARP-1 rested in G1 despite the temperature elevation. This coincided with exclusively cytoplasmic p53 protein in cells expressing p53135val and predominantly nuclear localization of p53 in p53135val +PARP-1 cells, as evidenced by immunostaining. Determination of the p53 level during the maintenance of cells at 32 degrees C revealed a marked decrease in the level of p53 in cells expressing p53135val alone, whereas in cells coexpressing PARP-1, the level of p53 remained largely unaffected. This indicates that the stability of wild-type p53 greatly differed between both cell lines. Furthermore, the inhibition of PARP-1 activity in G1 arrested cells by 3-aminobenzamide abolished its stabilizing effect on the wild-type p53 protein. Taken together, our results indicate that PARP-1 regulates the stability of the wt p53 protein and that its enzymatic activity is necessary for this stabilizing action.  相似文献   

3.
Mouse temperature-sensitive p53(Val-135) accumulates in the nucleus and acts as a "wild-type" at 32 degrees C while it is sequestered in the cytoplasm at 37 degrees C. The cytoplasmic p53(Val-135) relocalized into the nucleus upon inhibition of the nuclear export at 37 degrees C, whereas a mutation in a major bipartite nuclear localization signal (NLS) caused constitutive cytoplasmic localization, indicating that it shuttled between the cytoplasm and the nucleus by its own nuclear export signal and NLS rather than tethered to cytoplasmic structures. Although the full-length p53(Val-135) did not bind the import receptor at 37 degrees C, a C-terminally truncated p53(Val-135) lacking residues 326-390 did bind it. Molecular chaperones such as Hsc70 were associated with p53(Val-135) at 37 degrees C but not at 32 degrees C. When the nuclear export was blocked by leptomycin B, only a fraction lacking Hsc70 was specifically accumulated in the nucleus. Immunodepletion of Hsc70 from the reticulocyte lysate caused p53(Val-135) to bind the import receptor. This binding was blocked by supplying the cell extract containing Hsc70 but not by the addition of recombinant Hsc70 alone. We suggest that the association with the Hsc70-containing complex prevents the NLS from the access of the import receptor through the C-terminal region of p53(Val-135) at 37 degrees C, whereas its dissociation at 32 degrees C allows rapid nuclear import.  相似文献   

4.
The murine allele temperature-sensitive (ts) p53Val-135 encodes a ts p53 protein that behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. This ts allele was introduced into the p53 nonproducer Friend erythroleukemia cell line DP16-1. The DP16-1 cell line was derived from the spleen cells of a mouse infected with the polycythemia strain of Friend virus, and like other erythroleukemia cell lines transformed by this virus, it grows independently of erythropoietin, likely because of expression of the viral gp55 protein which binds to and activates the erythropoietin receptor. When incubated at 32 degrees C, DP16-1 cells expressing ts p53Val-135 protein, arrested in the G0/G1 phase of the cell cycle, rapidly lost viability and expressed hemoglobin, a marker of erythroid differentiation. Erythropoietin had a striking effect on p53Val-135-expressing cells at 32 degrees C by prolonging their survival and diminishing the extent of hemoglobin production. This response to erythropoietin was not accompanied by down-regulation of viral gp55 protein.  相似文献   

5.
D Michalovitz  O Halevy  M Oren 《Cell》1990,62(4):671-680
Mutant p53 can contribute to transformation, while wild-type (wt) p53 is not oncogenic and actually inhibits transformation. Furthermore, wt p53 may act as a suppressor gene in human carcinogenesis. We now describe the temperature-sensitive behavior of a particular mutant, p53val135. Like other p53 mutants, it can elicit transformation at 37.5 degrees C. However, at 32.5 degrees C it suppresses transformation, behaving like authentic wt p53. Moreover, the proliferation of transformed cells expressing p53val135 is dramatically inhibited at the permissive temperature. Significantly, the inhibition of both transformation and proliferation is reversible upon temperature upshift. These data demonstrate that the ability of wt p53 to suppress transformation is not due to a general lethal effect, but rather to a reversible growth arrest. p53val135 may prove instrumental for gaining insight into the cellular and molecular properties of wt p53.  相似文献   

6.
The p53 gene is a suppressor of abnormal cell growth but is also subject to oncogenic activation by mutation. The mutant allele p53-Val135, has recently been discovered to be temperature-sensitive and functions as an oncogene at 37 degrees C and as a tumor suppressor at 32.5 degrees C. In order to investigate the molecular mechanism underlying the temperature sensitivity of p53-Val135 rabbit reticulocyte lysate was used to translate the p53 mRNAs in vitro at 37 degrees C and at 30 degrees C. The immunoreactivity and T antigen binding of wild-type protein p53-Ala135 were unaffected by temperature and were similar to wild-type p53 expressed in vivo. In contrast, the mutant p53-Val135 protein was markedly affected by temperature. At 37 degrees C p53-Val135 showed reduced T antigen binding and did not react with monoclonal antibodies PAb246 and PAb1620. At 30 degrees C, p53-Val135 behaved as the wild-type p53. Temperature also exerted a post-translational effect on p53-Val135 with complete conversion from wild-type to mutant phenotype within two minutes of temperature shift from 30 degrees C to 37 degrees C. There was incomplete conversion from mutant to wild-type phenotype when the temperature was shifted down from 37 degrees C to 30 degrees C. We propose that the temperature dependent forms of p53-Val135 represent conformational variants of the p53 protein with opposing functions in cell growth control.  相似文献   

7.
8.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

9.
Utilizing a temperature sensitive p53 mutant (pLTRp53cGval135) which expresses mutant p53 at 37 degrees C and a wild-type like p53 at 32 degrees C, we transfected a human ovarian cancer cell line (SKOV3) which does not express endogenous p53. Among the different clones obtained, we selected three clones. Two were obtained from simultaneous transfection of p53 and neomycin resistance expression plasmids (SK23a and SK9), the other was obtained from transfection experiments utilizing the neomycin resistance gene only (SKN). Introduction of mutant p53 did not alter the morphology or growth characteristics of this ovarian cancer cell line. Upon shifting to the permissive temperature, a dramatic change in morphology and growth rate was observed in SK23a and SK9 cells that is associated with the presence of a wild-type like p53. SKN and SKOV3 cells maintained at 32 degrees C did not change morphology and only slightly reduced proliferation. Both SK23a and SK9 cells did not show evidence of apoptosis when measured up to 72 hours of maintenance at 32 degrees C. In contrast to what observed in other cell lines, SK23a and SK9 cells maintained at 32 degrees C were not blocked in G1, but they were accumulated in G2-M. This accumulation was transient and could be due either to a blockade or to a delay in the G2 progression. No down-regulation of c-myc was observed in p53 expressing clones when shifted to the permissive temperature. In these conditions gadd45 mRNA expression was highly stimulated in SK9 and SK23a cells but not in SKN cells. In both clones Gas1 mRNA was not detected either at 37 degrees C or 32 degrees C. This system represents a new and useful model for studying the effect of the absence of p53 (SKOV3 or SKN), presence of mutated p53 (SK23a and SK9 kept at 37 degrees C) or wild type p53 (SK23a and SK9 kept at 32 degrees C) on the mechanism of response of cancer cells to DNA damaging agents.  相似文献   

10.
11.
A temperature-sensitive mutant of p53, p53Val-135, was found to be able to arrest cell proliferation when overexpressed at 32.5 degrees C. While much of the protein was cytoplasmic in cells proliferating at 37.5 degrees C, it became predominantly nuclear at 32.5 degrees C. Concomitantly, p53Val-135 became destabilized, although not to the extent seen in primary fibroblasts.  相似文献   

12.
Y Barak  M Oren 《The EMBO journal》1992,11(6):2115-2121
To explore the biochemical functions of p53, we have initiated a search for cellular p53-binding proteins. Coprecipitation of three polypeptides was observed when cell lines overexpressing a temperature-sensitive (ts) p53 mutant were maintained at 32.5 degrees C (wild-type p53 activity, leading to growth arrest) but not at 37.5 degrees C (mutant p53 activity). One of these three proteins, designated p95 on the basis of its apparent molecular mass, was highly abundant in p53 immune complexes. We demonstrate herein that p95 is a p53-binding protein, which exhibits poor p53-binding in cells overproducing several distinct mutant p53 proteins. Yet, p95 associates equally well with both the wild-type (wt) and the mutant conformations of the ts p53 in transformed cells growth-arrested at 32.5 degrees C. On the basis of our findings we suggest that wt p53 activity increases p53-p95 complex formation and that such interaction may play a central role in p53 mediated tumour suppression.  相似文献   

13.
Activation of the p53 protein can lead to apoptosis and cell cycle arrest. In contrast, activation of the signalling pathway controlled by the Kit receptor tyrosine kinase prevents apoptosis and promotes cell division of a number of different cell types in vivo. We have investigated the consequences of activating the Kit signalling pathway by its ligand Steel factor on these opposing functions of the p53 protein in Friend erythroleukemia cells. A temperature-sensitive p53 allele (Val-135) was introduced into the Friend erythroleukemia cell line (DP-16) which lacks endogenous p53 expression. At 38.5 degrees C, the Val-135 protein maintains a mutant conformation and has no effect on cell growth. At 32 degrees C, the mutant protein assumes wild-type properties and induces these cells to arrest in G1, terminally differentiate, and die by apoptosis. We demonstrate that Steel factor inhibits p53-mediated apoptosis and differentiation but has no effect on p53-mediated G1/S cell cycle arrest. These results demonstrate that Steel factor functions as a cell survival factor in part through the suppression of differentiation and apoptosis induced by p53 and suggest that cell cycle arrest and apoptosis may be separable functions of p53.  相似文献   

14.
The effects of heat shock protein 70 (Hsp70), a molecular chaperone, on the degradation and functional alterations of a mutant large T antigen induced by a nonpermissive temperature were examined. In this study, mouse tracheal epithelial TM02-3 cells harboring temperature-sensitive simian virus 40 large T antigen and stable TM02-3 cells overexpressing human Hsp70 and/or Hsp40 were used. Although the temperature shift from 33 degrees C (permissive temperature) to 39 degrees C (nonpermissive temperature) induced increases in the endogenous chaperones including Hsp70 and Hsp40, degradation of the T antigen, activation of the p53-p21(waf1) pathway, and an arrest of cell growth were observed in the mock cells. In contrast, these changes induced by the temperature shift were partially but significantly prevented in stable cells overexpressing human Hsp70 and/or Hsp40. A combination of Hsp70 and Hsp40 was the most effective, suggesting that Hsp40 may cooperate with Hsp70. Moreover, immunocytochemical observation indicated that human Hsp70 was expressed in the cytoplasm at 33 degrees C, but it colocalized with T antigen in the nucleus at 39 degrees C. These results suggest that overexpressed Hsp70 translocates from the cytoplasm to nucleus, and significantly restores the structural stability and functional defects of mutant large T antigen in the cells.  相似文献   

15.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

16.
Murine erythroleukemia cells that lack endogenous p53 expression were transfected with a temperature-sensitive p53 allele. The temperature-sensitive p53 protein behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. Three independent clones expressing the temperature-sensitive p53 protein were characterized with respect to p53-mediated G1 cell cycle arrest, apoptosis, and differentiation. Clone ts5.203 responded to p53 activation at 32 degrees C by undergoing G1 arrest, apoptosis, and differentiation. Apoptosis was seen in cells representative of all phases of the cell cycle and was not restricted to cells arrested in G1. The addition of a cytokine (erythropoietin, c-kit ligand, or interleukin-3) to the culture medium of ts5.203 cells blocked p53-mediated apoptosis and differentiation but not p53-mediated G1 arrest. These observations indicate that apoptosis and G1 arrest can be effectively uncoupled through the action of cytokines acting as survival factors and are consistent with the idea that apoptosis and G1 arrest represent separate functions of p53. Clones ts15.15 and tsCB3.4 responded to p53 activation at 32 degrees C by undergoing G1 arrest but not apoptosis. We demonstrate that tsCB3.4 secretes a factor with erythropoietin-like activity and that ts15.15 secretes a factor with interleukin-3 activity and suggest that autocrine secretion of these cytokines blocks p53-mediated apoptosis. These data provide a framework in which to understand the variable responses of cells to p53 overexpression.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand receptor 3 (TRAIL-R3) is a decoy receptor for TRAIL, a member of the tumor necrosis factor family. In several cell types decoy receptors inhibit TRAIL-induced apoptosis by binding TRAIL and thus preventing its binding to proapoptotic TRAIL receptors. We studied the regulation of TRAIL-R3 gene expression in breast tumor cells treated with the genotoxic drug doxorubicin (DXR). The breast tumor cell line MCF-7 (p53 wild type) responded to DXR with a marked elevation of TRAIL-R3 expression at the mRNA, total protein, and cell surface levels. In contrast, in EVSA-T cells (p53 mutant) DXR did not induce increased expression of TRAIL-R3. In MCF-7 cells overexpressing the human papillomavirus protein E6, which causes p53 degradation, DXR-induced TRAIL-R3 expression was notably reduced. Furthermore, in MCF-7 cells overexpressing a temperature-sensitive p53 mutant (Val135), shifting the cultures to the permissive temperature was sufficient to induce the expression of TRAIL-R3. We also cloned and characterized a p53 consensus element located within the first intron of the human TRAIL-R3 gene. This element binds p53 and confers responsiveness to genotoxic damage to constructs of the TRAIL-R3 promoter in transient transfection experiments. Our results indicate that genotoxic treatments such as DXR, frequently used in cancer therapy, may also induce genes such as TRAIL-R3 that potentially have antiapoptotic actions and thus interfere with the TRAIL signaling system. This is particularly important in view of the proposed use of TRAIL in antitumor therapy.  相似文献   

18.
Poly(ADP-ribosyl)ation of mutant and wild-type p53 was studied in transformed and nontransformed rat cell lines constitutively expressing the temperature-sensitive p53135val. It was found that in both cell types at 37.5°C, where overexpressed p53 exhibits mutant conformation and cytoplasmic localization, a considerable part of the protein was poly(ADP-ribosyl)ated. Using densitometric scanning, the molecular mass of the modified protein was estimated as 64 kD. Immunofluorescence studies with affinity purified anti-poly(ADP-ribose) transferase (pADPRT) antibodies revealed that, contrary to predictions, the active enzyme was located in the cytoplasm, while in nuclei chromatin was depleted of pADPRT. A distinct intracellular localization and action of pADPRT was found in the cell lines cultivated at 37.5°C, where p53 adopts wild-type form. Despite nuclear coexistence of both proteins no significant modification of p53 was found. Since the strikingly shared compartmentalization of p53 and pADPRT was indicative of possible complex formation between the two proteins, reciprocal immunoprecipitation and immunoblotting were performed with anti-p53 and anti-pADPRT antibodies. A poly(ADP-ribosyl)ated protein of 116 kD constantly precipitated at stringent conditions was identified as the automodified enzyme. It is concluded that mutant cytoplasmic p53 is tighly complexed to pADPRT and becomes modified. At 32.5°C binding to DNA of p53 or its temperature-dependent conformational alteration might prevent an analogous modification of the tumor suppressor protein. © 1996 Wiley-Liss, Inc.  相似文献   

19.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

20.
A temperature-sensitive mutant of murine p53 (p53Val-135) was transfected by electroporation into murine erythroleukemia cells (DP16-1) lacking endogenous expression of p53. While the transfected cells grew normally in the presence of mutant p53 (37.5 degrees C), wild-type p53 (32.5 degrees C) was associated with a rapid loss of cell viability. Genomic DNA extracted at 32.5 degrees C was seen to be fragmented into a characteristic ladder consistent with cell death due to apoptosis. Following synchronization by density arrest, transfected cells released into G1 at 32.5 degrees C were found to lose viability more rapidly than did randomly growing cultures. Following release into G1, cells became irreversibly committed to cell death after 4 h at 32.5 degrees C. Commitment to cell death correlated with the first appearance of fragmented DNA. Synchronized cells allowed to pass out of G1 prior to being placed at 32.5 degrees C continued to cycle until subsequently arrested in G1; loss of viability occurred following G1 arrest. In contrast to cells in G1, cells cultured at 32.5 degrees C for prolonged periods during S phase and G2/M, and then returned to 37.5 degrees C, did not become committed to cell death. G1 arrest at 37.5 degrees C, utilizing either mimosine or isoleucine deprivation, does not lead to rapid cell death. Upon transfer to 32.5 degrees C, these G1 synchronized cell populations quickly lost viability. Cells that were kept density arrested at 32.5 degrees C (G0) lost viability at a much slower rate than did cells released into G1. Taken together, these results indicate that wild-type p53 induces cell death in murine erythroleukemia cells and that this effect occurs predominantly in the G1 phase of actively cycling cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号