首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the first day of hatching, the developing chicken embryo internally pips the air cell and relies on both the lungs and chorioallantoic membrane (CAM) for gas exchange. Our objective in this study was to examine respiratory and cardiovascular responses to acute changes in oxygen at the air cell or the rest of the egg during internal pipping. We measured lung (VO2(lung)) and CAM (VO2(CAM)) oxygen consumption independently before and after 60 min exposure to combinations of hypoxia, hyperoxia, and normoxia to the air cell and the remaining egg. Significant changes in VO2(total) were only observed with combined egg and air cell hypoxia (decreased VO2(total)) or egg hyperoxia and air cell hypoxia (increased VO2(total)). In response to the different O2 treatments, a change in VO2(lung) was compensated by an inverse change in VO2(CAM) of similar magnitude. To test for the underlying mechanism, we focused on ventilation and cardiovascular responses during hypoxic and hyperoxic air cell exposure. Ventilation frequency and minute ventilation (V(E)) were unaffected by changes in air cell O2, but tidal volume (V(T)) increased during hypoxia. Both V(T) and V(E) decreased significantly in response to decreased P(CO2). The right-to-left shunt of blood away from the lungs increased significantly during hypoxic air cell exposure and decreased significantly during hyperoxic exposure. These results demonstrate the internally pipped embryo's ability to control the site of gas exchange by means of altering blood flow between the lungs and CAM.  相似文献   

2.
Six male rowers rowed maximally for 2500 m in ergometer tests during normoxia (fractional concentration of oxygen in inspired air, F IO2 0.209), in hyperoxia (F IO2 0.622) and in hypoxia (F IO2 0.158) in a randomized single-blind fashion. Oxygen consumption (O2), force production of strokes as well as integrated electromyographs (iEMG) and mean power frequency (MPF) from seven muscles were measured in 500-m intervals. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Maximal force of a stroke (F max) decreased from the 100% pre-exercise maximal value to 67 (SD 12)%, 63 (SD 15)% and 76 (SD 13)% (P<0.05 to normoxia, ANOVA) and impulse to 78 (SD 4)%, 75 (SD 14)% and 84 (SD 7)% (P<0.05) in normoxia, hypoxia and hyperoxia, respectively. A strong correlation between F max and O2 was found in normoxia but not in hypoxia and hyperoxia. The mean sum-iEMG tended to be lower (P<0.05) in hypoxia than in normoxia but hyperoxia had no significant effect on it. In general, F IO2 did not affect MPF of individual muscles. In conclusion, it was found that force output during ergometer rowing was impaired during hypoxia and improved during hyperoxia when compared with normoxia. Moreover, the changes in force output were only partly accompanied by changes in muscle electrical activity as sum-iEMG was affected by hypoxic but not by hyperoxic gas. The lack of a significant correlation between F max and O2 during hypoxia and hyperoxia may suggest a partial uncoupling of these processes and the existence of other limiting factors in addition to O2. Accepted: 2 June 1997  相似文献   

3.
Effects of hypoxia on resting oxygen consumption ( ), lung ventilation, and heart rate at different ambient PO2 were compared between lowland and high altitude populations of the toad, Bufo bankorensis. Resting decreased significantly in mild hypoxia (PO2=120 mm Hg) at 10°C and in moderate hypoxia (PO2=80 mm Hg) at 25°C in both altitudinal populations; however, resting did not differ significantly between the two populations. Numbers of lung ventilation periods (VP) and total inspired volume (VL) did not change with PO2 at 10°C, but did increase at moderate and severe hypoxia (40 mm Hg), respectively, at 25°C. Resting heart rates did not change during hypoxia and did not differ between altitude populations. The results suggest (1) the effect of PO2 change on should be considered in future studies involving transfer of anurans to a different altitude; and (2) the metabolic and ventilatory physiology in B. bankorensis does not compensate for the low temperature and PO2 at high altitude.  相似文献   

4.
Eggs with pip-holes of the black-footed (Diomedea nigripes) and Laysan (Diomedea immutabilis) albatrosses were exposed to various air temperatures in the range 20–35°C in order to detect signs of incipient endothermy in late embryos. No evidence of endothermy was found. In contrast, the O2 consumption of most hatchlings increased in response to cooling, the O2 consumption at an air temperature of 25° C exceeding that between 34 and 35°C by 40%. In a minority of hatchlings this response was not seen. It was suggested that endothermy may develop at some time during the 24 h after hatching.Abbreviations bm body mass - C total total thermal conductance of tissues and plumage - f respiratory frequency - FEO 2 fractional concentration of oxygen in air leaving chamber - FIO 2 fractional concentration of oxygen in air entering chamber - T a an temperature - T b deep-body temperature - V air-flow rate - VO2 oxygen consumption  相似文献   

5.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

6.
Normal heart rate (HR), and the HR responses to hypoxia and hyperoxia during early heart development in chick embyros have not been studied in detail, particularly in undisturbed embryos within the intact egg. HR was measured in day 3–9 chick embryos at 38 °C using relatively noninvasive impedance cardiography. Embryos were exposed to air (control) and to hypoxic (10% O2) or hyperoxic (100% O2) gas for a 2-h or 4-h period, during which HR was continually monitored. Control (normoxic) HR increased from about 150 beats per min (bpm) on day 3 to about 240 bpm on days 7–9. HR in very early embryos showed a variety of moderate responses to hypoxia (all survived), but as development progressed beyond day 6, hypoxic exposure induced a profound bradycardia that frequently terminated in death before the end of the measurement period. In contrast to the marked developmental changes in hypoxic sensitivity, HR showed little response to hyperoxia throughout development, suggesting no “hypoxic drive” to HR. We speculate that hypoxia has little effect early in development because of the embryo's small absolute O2 demand, but as the embryo grows, hypoxia represents a progressively more severe perturbation. Although general trends were identified, there was considerable variation in both HR and HR responses to ambient O2 changes between individuals of the same developmental stage. Accepted: 16 December 1998  相似文献   

7.
The present study was performed to investigate the effects of a combination of intermittent exposure to hypoxia during exercise training for short periods on ventilatory responses to hypoxia and hypercapnia (HVR and HCVR respectively) in humans. In a hypobaric chamber at a simulated altitude of 4,500 m (barometric pressure 432 mmHg), seven subjects (training group) performed exercise training for 6 consecutive days (30 min · day−1), while six subjects (control group) were inactive during the same period. The HVR, HCVR and maximal oxygen uptake (O2 max) for each subject were measured at sea level before (pre) and after exposure to intermittent hypoxia. The post exposure test was carried out twice, i.e. on the 1st day and 1 week post exposure. It was found that HVR, as an index of peripheral chemosensitivity to hypoxia, was increased significantly (P < 0.05) in the control group after intermittent exposure to hypoxia. In contrast, there was no significant increase in HVR in the training group after exposure. The HCVR in both groups was not changed by intermittent exposure to hypoxia, while O2 max increased significantly in the training group. These results would suggest that endurance training during intermittent exposure to hypoxia depresses the increment of chemosensitivity to hypoxia, and that intermittent exposure to hypoxia in the presence or absence of exercise training does not induce an increase in the chemosensitivity to hypercapnia in humans. Accepted: 18 March 1998  相似文献   

8.
It has previously been demonstrated that metabolic heat production (M˙) during cold exposure at rest was related to maximal oxygen uptake (O2max). Consequently, an increase in O2max could allow an increase M˙ in the cold. The aim of the present study was therefore to test this hypothesis. Eight male volunteers undertook interval training (periods of 25% O2max of 30-s duration and 110% O2max of 60-s duration until exhaustion, five times a week over 8 weeks) to increase O2max. Both before and after this physical training, they were subjected to a 10, 5 and 1C 2-h cold air test in a climatic chamber. During the cold exposure, rectal temperature (T re), tympanic temperature (T ty), mean skin temperature () and M˙ were measured as well as the time to onset of shivering (t) and body temperatures () at t. The results showed that physical training involved an increase in O2max (14%–15%, P < 0.05). During the cold exposure, T re was higher after training both at 10,5 and 1C (P < 0.05) whereas were not significantly changed. However, an increase in the sensitivity of the thermoregulatory system was attested by a decreased t at higher These slight physiological changes found after training were not related to the increases in O2max. In conclusion, this study demonstrated that interval training induced slight thermoregulatory changes unrelated to changes in O2max and it suggested that M˙ during cold exposure could be related mainly to the level of O2max observed before training, since increases in O2max did not modify M˙. Accepted: 8 April 1998  相似文献   

9.
Summary Minute ventilation (V E), tidal volume (V T), respiratory frequency (f) and clavicular air sac gas composition were measured in conscious domestic fowl breathing air and hypoxic gas mixtures at neutral (18±1°C) and raised (33±1°C) air temperatures. Increases inV E caused by inhalation of 10%, 8% or 6.5% O2 in N2, respectively, were independent of temperature although at each level the absoluteV E was ca. 21·min−1 greater in the panting birds. Changes in respiratory pattern during hypoxia were markedly dependent on temperature. At 18°C almost all of the increasedV E resulted from increasedf. At 33°C hypoxia led to a strong suppression off and increase inV T. It is concluded that hyperthermia and hypoxia are additive and non-interactive in their effects on ventilatory drive, in agreement with previously reported effects of hypercapnia and physical exercise on breathing in panting fowl.  相似文献   

10.
Synopsis Oxygen uptake (VO2) during graded hypoxia, rate of hypoxia acclimation, breathing frequency (fR), breath volume (VS, R) and gill ventilation (VG) were measured in Hoplias malabaricus. Normoxia and hypoxia acclimated fish had similar and constant VO2 and VG in a range of water PO2 from 150 to 25 mmHg. Hypoxia acclimated fish showed significantly higher VO2 in severe hypoxia (PO2 <15 mmHg). Normoxia acclimated fish showed symptoms similar to hypoxic coma after 1 h of exposure to water PO2 of 10 mmHg whereas the same symptoms were observed only at PO2 of 5 mmHg for fish acclimated to hypoxia. Fish required 14 days to achieve full acclimation to hypoxia (PO2 ≥25 mmHg). Lowering of water PO2 from 150 to 25 mmHg resulted in normoxic fish showing a 3–2 fold increase in VG. The increase was the result of an elevation in VS, R rather than fR. Among normoxia acclimated specimens, small fish showed a higher VG per unit weight than the large ones in both normoxia (PO2 =150 mmHg) and hypoxia (PO2 = 15 mmHg). A decrease in the ventilatory requirement (VG/VO2) with increased body weight was recorded in hypoxia (PO2 = 15 mmHg).  相似文献   

11.
The localization, distribution and orientation of O2 chemoreceptors associated with the control of cardio-respiratory responses were investigated in the neotropical, Hoplias lacerdae. Selective denervation of the cranial nerves (IX and X) was combined with chemical stimulation (NaCN) to characterize the gill O2 chemoreceptors, and the fish were then exposed to gradual hypoxia to examine the extent of each cardio-respiratory response. Changes in heart rate (fH) and ventilation amplitude (Vamp) were allied with chemoreceptors distributed on both internal and external surfaces of all gill arches, while ventilation rate (fR) was allied to the O2 chemoreceptors located only in the internal surface of the first gill arch. H. lacerdae exposed to gradual hypoxia produced a marked bradycardia (45%) and 50% increase in Vamp, but only a relatively small change in fR (32%). Thus, the low fR response yet high Vamp were in accord with the characterization of the O2 chemoreceptors. Comparing these results from H. lacerdae with hypoxia-tolerant species revealed a relationship existent between general oxygenation of the individual species environment, its cardio-respiratory response to hypoxia and the characterization of O2 chemoreceptors.  相似文献   

12.
Oxygen (O2) is one of the most important environmental factors that affects both physiological processes and development of aerobic animals, yet little is known about the neural mechanism of O2 sensing and adaptive responses to low O2 (hypoxia) during development. In the pond snail, Helisoma trivolvis, the first embryonic neurons (ENC1s) to develop are a pair of serotonergic sensory‐motor cells that regulate a cilia‐driven rotational behavior. Here, we report that the ENC1‐ciliary cell circuit mediates an adaptive behavioral response to hypoxia. Exposure of egg masses to hypoxia elicited a dose‐dependent and reversible acceleration of embryonic rotation that mixed capsular fluid, thereby facilitating O2 diffusion to the embryo. The O2 partial pressures (Po2) for threshold, half‐maximal, and maximal rotational response were 60, 28, and 13 mm Hg, respectively. During hypoxia, embryos relocated to the periphery of the egg masses where higher Po2 levels occurred. Furthermore, intermittent hypoxia treatments induced a sensitization of the rotational response. In isolated ciliary cells, ciliary beating was unaffected by hypoxia, suggesting that in the embryo, O2 sensing occurs upstream of the motile cilia. The rotational response of embryos to hypoxia was attenuated by application of the serotonin receptor antagonist, mianserin, correlated to the development of ENC1‐ciliary cell circuit, and abolished by laser‐ablation of ENC1s. Together, these data suggest that ENC1s are unique oxygen sensors that may provide a good single cell model for the examination of mechanistic, developmental, and evolutionary aspects of O2 sensing. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 73–83, 2002  相似文献   

13.
BackgroundHyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2) can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS) is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response.MethodsWild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h.ResultsExposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice.ConclusionTaken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.  相似文献   

14.
The kinetics of the uptake and efflux of 3-O-methyl-glucose in sporidia of Ustilago maydis were measured, both in active cells and in cells whose metabolic activity had been inhibited by azide and iodoacetate.The de-energized transport system proved to be carrier mediated with apparent affinity constants 13 ± 2 mM outside (K0) and 18 ± 2 mM inside (K1). The apparent maximum rate constants for the same system were 0.66 ± 0.05 mmol/l cell water per min for uptake (V+ and 0.53 ± 0.04 mmol/l cell water per min for efflux (V-. For the active system K0 = 0.08 ± 0.01, K1 > 40, V+ = 9.7 ± 0.5 and V 1.1 ± 0.9 (in equivalent units). These results are discussed in the context of the carrier mechanism as proposed by Regen and Morgan (Regen, D.M. and Morgan, H.E. (1964) Biochim. Biophys. Acta 79, 151–166).The antifungal compound carboxin had no effect on de-energized transport but was shown to decrease both K0 and V+ in the active system. Phloretin and phlorizin were also found to be without effect on de-energized cells but the former enhanced while the latter inhibited active uptake.  相似文献   

15.
In one series of experiments, heart frequency (f H), blood pressure (P a), gill ventilation frequency (f R ), ventilation amplitude (V AMP) and total gill ventilation (V TOT) were measured in intact jeju (Hoplerythrinus unitaeniatus) and jeju with progressive denervation of the branchial branches of cranial nerves IX (glossopharyngeal) and X (vagus) without access to air. When these fish were submitted to graded hypoxia (water PO2 ~140, normoxia to 17 mmHg, severe hypoxia), they increased f R , V AMP, V TOT and P a and decreased f H. In a second series of experiments, air-breathing frequency (f RA), measured in fish with access to the surface, increased with graded hypoxia. In both series, bilateral denervation of all gill arches eliminated the responses to graded hypoxia. Based on the effects of internal (caudal vein, 150 μg NaCN in 0.2 mL saline) and external (buccal) injections of NaCN (500 μg NaCN in 1.0 mL water) on f R , V AMP, V TOT, P a and f H we conclude that the O2 receptors involved in eliciting changes in gill ventilation and associated cardiovascular responses are present on all gill arches and monitor the O2 levels of both inspired water and blood perfusing the gills. We also conclude that air breathing arises solely from stimulation of branchial chemoreceptors and support the hypothesis that internal hypoxaemia is the primary drive to air breathing.  相似文献   

16.
This study employs closed-circuit respirometry to evaluate the effect of declining ambient oxygen partial pressure (PO2) and temperature on mass specific rates of oxygen uptake (O2) in Nautilus pompilius. At all temperatures investigated (11, 16, and 21 °C), O2 is relatively constant at high PO2 (oxyregulation) but declines sharply at low PO2 (oxyconformation). The critical PO2 below which oxyconformation begins (P c) is temperature dependent, higher at 21 °C (49 mmHg) than at 11 °C or 16 °C (21.7 mmHg and 30.8 mmHg respectively). In resting, post-absorptive animals, steady-state resting O2 increases significantly with temperature resulting in a Q10 value of approximately 2.5. The metabolic strategy of N. pompilius appears well suited to its lifestyle, providing sufficient metabolic scope for its extensive daily vertical migrations, but allowing for metabolic suppression when PO2 falls too low. The combination of low temperatures and low PO2 may suppress metabolic rate 16-fold (assuming negligible contributions from anaerobic metabolism and internal O2 stores), enhancing hypoxia tolerance. Accepted: 20 January 2000  相似文献   

17.
The cardiovascular system performs key physiological functions even as it develops and grows. The ontogeny of cardiac physiology was studied throughout embryonic and larval development in the red swamp crayfish Procambarus clarkii using videomicroscopic dimensional analysis. The heart begins to contract by day 13 of development (at 25°C, 20 kPa O2). Prior to eclosion, heart rate (ƒH) decreases significantly. Previous data suggests that the decrease in cardiac parameters prior to hatching may be due to an oxygen limitation of the embryo. Throughout development, metabolizing mass and embryonic oxygen consumption primarily increased while egg surface area remains constant. The limited area for gas exchange of the egg membrane, in combination with the increasing oxygen demand of the embryo could result in an inadequate diffusive supply of oxygen to developing tissues. To determine if the decrease in cardiac function was the result of an internal hypoxia experienced during late embryonic development, early and late stage embryos were exposed to hyperoxic water (PO2 =40 kPa O2). The ƒH in late stage embryos increased significantly over control values when exposed to hyperoxic water suggesting that the suppression in cardiac function observed in late stage embryos is likely due to a limited oxygen supply.  相似文献   

18.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

19.
Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V.O2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V.O2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V.O2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V.O2 at higher Ta (36 °C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V.O2. No relationship was found between the magnitudes of decreases in Tb and V.O2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V.O2 was unchanged.  相似文献   

20.
S. cerevisiae was grown in a blackstrap molasses containing medium in batch and fed-batch cultures. The following parameters were varied: pH (from 4.0 to 6.5), dissolved oxygen (DO) (from 0 to 5.0 mg O2L–1) and sucrose feeding rate. When glucose concentration (S) was higher than 0.5 g L–1 a reduction in the specific invertase activity of intact cells (v) and an oscillatory behavior of v values during fermentation were observed. Both the invertase reduction and the oscillatory behavior of v values could be related to the glucose inhibitory effect on invertase biosynthesis. The best culture conditions for attainingS. cerevisiae cells suitable for invertase production were: temperature=30°C; pH=5.0; DO=3.3 mg O2L–1; (S)=0.5 g L–1 and sucrose added into the fermenter according to the equations: (V–Vo)=t2/16 or (V–Vo)=(Vf–Vo)·(e0.6t–1)/10.This work was supported by FAPESP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号