首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of Needleman-Wunsch alignment techniques to biological sequences is complicated by two serious problems when the sequences are long: the running time, which scales as the product of the lengths of sequences, and the difficulty in obtaining suitable parameters that produce meaningful alignments. The running time problem is often corrected by reducing the search space, using techniques such as banding, or chaining of high-scoring pairs. The parameter problem is more difficult to fix, partly because the probabilistic model, which Needleman-Wunsch is equivalent to, does not capture a key feature of biological sequence alignments, namely the alternation of conserved blocks and seemingly unrelated nonconserved segments. We present a solution to the problem of designing efficient search spaces for pair hidden Markov models that align biological sequences by taking advantage of their associated features. Our approach leads to an optimization problem, for which we obtain a 2-approximation algorithm, and that is based on the construction of Manhattan networks, which are close relatives of Steiner trees. We describe the underlying theory and show how our methods can be applied to alignment of DNA sequences in practice, successfully reducing the Viterbi algorithm search space of alignment PHMMs by three orders of magnitude.  相似文献   

2.

Background  

Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms.  相似文献   

3.
Since traditional multiple alignment formulations are NP-hard, heuristics are commonly employed to find acceptable alignments with no guaranteed performance bound. This causes a substantial difficulty in understanding what the resulting alignment means and in assessing the quality of these alignments. We propose an alternative formulation of multiple alignment based on the idea of finding a multiple alignment of k sequences which preserves k - 1 pairwise alignments as specified by edges of a given tree. Although it is well known that such a preserving alignment always exists, it did not become a mainstream method for multiple alignment since it seems that a lot of information is lost from ignoring pairwise similarities outside the tree. In contrast, by using pairwise alignments that incorporate consistency information from other sequences, we show that it is possible to obtain very good accuracy with the preserving alignment formulation. We show that a reasonable objective function to use is to find the shortest preserving alignment, and, by a reduction to a graph-theoretic problem, that the problem of finding the shortest preserving multiple alignment can be solved in polynomial time. We demonstrate the success of this approach on three sets of benchmark multiple alignments by using consistency-based pairwise alignments from the first stage of two of the best performing progressive alignment algorithms TCoffee and ProbCons and replace the second heuristic progressive step of these algorithms by the exact preserving alignment step. We apply this strategy to TCoffee and show that our approach outperforms TCoffee on two of the three test sets. We apply the strategy to a variant of ProbCons with no iterative refinements and show that our approach achieves similar or better accuracy except on one test set. We also compare our performance to ProbCons with iterative refinements and show that our approach achieves similar or better accuracy on many subcategories even without further refinements. The most important advantage of the preserving alignment formulation is that we are certain that we can solve the problem in polynomial time without using a heuristic. A software program implementing this approach (PSAlign) is available at http://faculty.cs.tamu.edu/shsze/psalign.  相似文献   

4.
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.  相似文献   

5.
MOTIVATION: Mathematically optimal alignments do not always properly align active site residues or well-recognized structural elements. Most near-optimal sequence alignment algorithms display alternative alignment paths, rather than the conventional residue-by-residue pairwise alignment. Typically, these methods do not provide mechanisms for finding effectively the most biologically meaningful alignment in the potentially large set of options. RESULTS: We have developed Web-based software that displays near optimal or alternative alignments of two protein or DNA sequences as a continuous moving picture. A WWW interface to a C++ program generates near optimal alignments, which are sent to a Java Applet, which displays them in a series of alignment frames. The Applet aligns residues so that consistently aligned regions remain at a fixed position on the display, while variable regions move. The display can be stopped to examine alignment details.  相似文献   

6.
PALMA: mRNA to genome alignments using large margin algorithms   总被引:1,自引:0,他引:1  
MOTIVATION: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. RESULTS: We present a novel approach based on large margin learning that combines accurate splice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm-called PALMA-tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from Caenorhabditis elegans and human, it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. AVAILABILITY: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma  相似文献   

7.
The standard method of applying hidden Markov models to biological problems is to find a Viterbi (maximal weight) path through the HMM graph. The Viterbi algorithm reduces the problem of finding the most likely hidden state sequence that explains given observations, to a dynamic programming problem for corresponding directed acyclic graphs. For example, in the gene finding application, the HMM is used to find the most likely underlying gene structure given a DNA sequence. In this note we discuss the applications of sampling methods for HMMs. The standard sampling algorithm for HMMs is a variant of the common forward-backward and backtrack algorithms, and has already been applied in the context of Gibbs sampling methods. Nevetheless, the practice of sampling state paths from HMMs does not seem to have been widely adopted, and important applications have been overlooked. We show how sampling can be used for finding alternative splicings for genes, including alternative splicings that are conserved between genes from related organisms. We also show how sampling from the posterior distribution is a natural way to compute probabilities for predicted exons and gene structures being correct under the assumed model. Finally, we describe a new memory efficient sampling algorithm for certain classes of HMMs which provides a practical sampling alternative to the Hirschberg algorithm for optimal alignment. The ideas presented have applications not only to gene finding and HMMs but more generally to stochastic context free grammars and RNA structure prediction.  相似文献   

8.
Cozzetto D  Tramontano A 《Proteins》2005,58(1):151-157
Comparative modeling is the method of choice, whenever applicable, for protein structure prediction, not only because of its higher accuracy compared to alternative methods, but also because it is possible to estimate a priori the quality of the models that it can produce, thereby allowing the usefulness of a model for a given application to be assessed beforehand. By and large, the quality of a comparative model depends on two factors: the extent of structural divergence between the target and the template and the quality of the sequence alignment between the two protein sequences. The latter is usually derived from a multiple sequence alignment (MSA) of as many proteins of the family as possible, and its accuracy depends on the number and similarity distribution of the sequences of the protein family. Here we describe a method to evaluate the expected difficulty, and by extension accuracy, of a comparative model on the basis of the MSA used to build it. The parameter that we derive is used to compare the results obtained in the last two editions of the Critical Assessment of Methods for Structure Prediction (CASP) experiment as a function of the difficulty of the modeling exercise. Our analysis demonstrates that the improvement in the scope and quality of comparative models between the two experiments is largely due to the increased number of available protein sequences and to the consequent increased chance that a large and appropriately spaced set of protein sequences homologous to the proteins of interest is available.  相似文献   

9.
An evolutionary model for maximum likelihood alignment of DNA sequences   总被引:16,自引:0,他引:16  
Summary Most algorithms for the alignment of biological sequences are not derived from an evolutionary model. Consequently, these alignment algorithms lack a strong statistical basis. A maximum likelihood method for the alignment of two DNA sequences is presented. This method is based upon a statistical model of DNA sequence evolution for which we have obtained explicit transition probabilities. The evolutionary model can also be used as the basis of procedures that estimate the evolutionary parameters relevant to a pair of unaligned DNA sequences. A parameter-estimation approach which takes into account all possible alignments between two sequences is introduced; the danger of estimating evolutionary parameters from a single alignment is discussed.  相似文献   

10.
11.
DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.  相似文献   

12.
Determination of reliable regions in protein sequence alignments   总被引:7,自引:0,他引:7  
Judging the significance of alignments is still a major problem in sequence comparison. We present a method to delineate reliable regions within an alignment. This differs from standard approaches in that it does not attempt to attribute one significance value to the alignment as a whole, but assesses alignment quality locally. An algorithm is provided that predicts which residue pairs in an alignment are likely to be correctly matched. The predictions are evaluated by comparison with alignments taken from tertiary structural superpositions.  相似文献   

13.
The problem of alignment of two symbol sequences is considered. The validity of the available algorithms for constructing optimal alignment depends on the weighting coefficients which are frequently difficult to choose. A new approach to the problem is proposed, which is based on the use of vector weighting functions (instead of tradionally used scalar ones) and Pareto-optimal alignment (an alignment that is optimal at any choice of weighting coefficient will always be Pareto-optimal). An efficient algorithm for constructing all Pareto-optimal alignments of two sequences is proposed. An approach to choosing a "biologically correct" alignment among all Pareto-optimal alignments is suggested.  相似文献   

14.
Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfamilies remain largely unstable and many genera are not demonstrably monophyletic. Here, we used five alternative combinations of DNA sequence data (ranging from seven loci for 48 taxa to up to 73 loci for as many as 142 taxa) generated using the anchored phylogenomics sequencing method (66 loci, derived from conserved genome regions, for 48 taxa) and Sanger sequencing (seven loci for up to 142 taxa) to tackle this problem. We assess the effects of character sampling, taxon sampling, analytical methods and assumptions in phylogenetic inference of microhylid frogs. The phylogeny of microhylids shows high susceptibility to different analytical methods and datasets used for the analyses. Clades inferred from maximum‐likelihood are generally more stable across datasets than those inferred from parsimony. Parsimony trees inferred within a tree‐alignment framework are generally better resolved and better supported than those inferred within a similarity‐alignment framework, even under the same cost matrix (equally weighted) and same treatment of gaps (as a fifth nucleotide state). We discuss potential causes for these differences in resolution and clade stability among discovery operations. We also highlight the problem that commonly used algorithms for model‐based analyses do not explicitly model insertion and deletion events (i.e. gaps are treated as missing data). Our results corroborate the monophyly of Microhylidae and most currently recognized subfamilies but fail to provide support for relationships among subfamilies. Several taxonomic updates are provided, including naming of two new subfamilies, both monotypic.  相似文献   

15.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

16.

Background  

Alignments of homologous DNA sequences are crucial for comparative genomics and phylogenetic analysis. However, multiple alignment represents a computationally difficult problem. For protein-coding DNA sequences, it is more advantageous in terms of both speed and accuracy to align the amino-acid sequences specified by the DNA sequences rather than the DNA sequences themselves. Many implementations making use of this concept of "translated alignments" are incomplete in the sense that they require the user to manually translate the DNA sequences and to perform the amino-acid alignment. As such, they are not well suited to large-scale automated alignments of large and/or numerous DNA data sets.  相似文献   

17.
Toroidal winding of double-stranded DNA in the protein capsids of bacteriophages has been proposed previously. An alternative model for the packaging and arrangement of DNA in bacteriophage capsids is presented here. By introducing sharp folds, the alternative model avoids toroidal winding and its accompanying difficulties. This alternative model is in agreement with the current data obtained with several different bacteriophages.  相似文献   

18.
Exact and heuristic algorithms for the Indel Maximum Likelihood Problem.   总被引:1,自引:0,他引:1  
Given a multiple alignment of orthologous DNA sequences and a phylogenetic tree for these sequences, we investigate the problem of reconstructing the most likely scenario of insertions and deletions capable of explaining the gaps observed in the alignment. This problem, that we called the Indel Maximum Likelihood Problem (IMLP), is an important step toward the reconstruction of ancestral genomics sequences, and is important for studying evolutionary processes, genome function, adaptation and convergence. We solve the IMLP using a new type of tree hidden Markov model whose states correspond to single-base evolutionary scenarios and where transitions model dependencies between neighboring columns. The standard Viterbi and Forward-backward algorithms are optimized to produce the most likely ancestral reconstruction and to compute the level of confidence associated to specific regions of the reconstruction. A heuristic is presented to make the method practical for large data sets, while retaining an extremely high degree of accuracy. The methods are illustrated on a 1-Mb alignment of the CFTR regions from 12 mammals.  相似文献   

19.

Background  

Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype.  相似文献   

20.
A local algorithm for DNA sequence alignment with inversions   总被引:1,自引:0,他引:1  
A dynamic programming algorithm to find all optimal alignments of DNA subsequences is described. The alignments use not only substitutions, insertions and deletions of nucleotides but also inversions (reversed complements) of substrings of the sequences. The inversion alignments themselves contain substitutions, insertions and deletions of nucleotides. We study the problem of alignment with non-intersecting inversions. To provide a computationally efficient algorithm we restrict candidate inversions to theK highest scoring inversions. An algorithm to find theJ best non-intersecting alignments with inversions is also described. The new algorithm is applied to the regions of mitochondrial DNA ofDrosophila yakuba and mouse coding for URF6 and cytochrome b and the inversion of the URF6 gene is found. The open problem of intersecting inversions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号