首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ABCE1 gene is a member of the ATP-binding cassette (ABC) multigene family and is composed of two nucleotide binding domains and an N-terminal Fe-S binding domain. The ABCE1 gene encodes a protein originally identified for its inhibition of ribonuclease L, a nuclease induced by interferon in mammalian cells. The protein is also required for the assembly of the HIV and SIV gag polypeptides. However, ABCE1 is one of the most highly conserved proteins and is found in one or two copies in all characterized eukaryotes and archaea. Yeast ABCE1/RLI1 is essential to cell division and interacts with translation initiation factors in the assembly of the pre-initiation complex. We show here that the human ABCE1 protein is essential for in vitro and in vivo translation of mRNA and that it binds to eIF2alpha and eIF5. Inhibition of the Xenopus ABCE1 arrests growth at the gastrula stage of development, consistent with a block in translation. The human ABCE1 gene contains 16 introns, and the extremely high degree of amino acid identity allows the evolution of its introns to be examined throughout eukaryotes. The demonstration that ABCE1 plays a role in vertebrate translation initiation extends the known functions of this highly conserved protein. Translation is a highly regulated process important to development and pathologies such as cancer, making ABCE1 a potential target for therapeutics. The evolutionary analysis supports a model in which an ancestral eukaryote had large number of introns and that many of these introns were lost in non-vertebrate lineages.  相似文献   

2.
Cerebral ischaemia causes long-lasting protein synthesis inhibition that is believed to contribute to brain damage. Energy depletion promotes translation inhibition during ischaemia, and the phosphorylation of eIF (eukaryotic initiation factor) 2alpha is involved in the translation inhibition induced by early ischaemia/reperfusion. However, the molecular mechanisms underlying prolonged translation down-regulation remain elusive. NMDA (N-methyl-D-aspartate) excitotoxicity is also involved in ischaemic damage, as exposure to NMDA impairs translation and promotes the synthesis of NO (nitric oxide), which can also inhibit translation. In the present study, we investigated whether NO was involved in NMDA-induced protein synthesis inhibition in neurons and studied the underlying molecular mechanisms. NMDA and the NO donor DEA/NO (diethylamine-nitric oxide sodium complex) both inhibited protein synthesis and this effect persisted after a 30 min exposure. Treatments with NMDA or NO promoted calpain-dependent eIF4G cleavage and 4E-BP1 (eIF4E-binding protein 1) dephosphorylation and also abolished the formation of eIF4E-eIF4G complexes; however, they did not induce eIF2alpha phosphorylation. Although NOS (NO synthase) inhibitors did not prevent protein synthesis inhibition during 30 min of NMDA exposure, they did abrogate the persistent inhibition of translation observed after NMDA removal. NOS inhibitors also prevented NMDA-induced eIF4G degradation, 4E-BP1 dephosphorylation, decreased eIF4E-eIF4G-binding and cell death. Although the calpain inhibitor calpeptin blocked NMDA-induced eIF4G degradation, it did not prevent 4E-BP1 dephosphorylation, which precludes eIF4E availability, and thus translation inhibition was maintained. The present study suggests that eIF4G integrity and hyperphosphorylated 4E-BP1 are needed to ensure appropriate translation in neurons. In conclusion, our data show that NO mediates NMDA-induced persistent translation inhibition and suggest that deficient eIF4F activity contributes to this process.  相似文献   

3.
4.
Histone biogenesis is tightly controlled at multiple steps to maintain the balance between the amounts of DNA and histone protein during the cell cycle. In particular, translation and degradation of replication-dependent histone mRNAs are coordinately regulated. However, the underlying molecular mechanisms remain elusive. Here, we investigate remodeling of stem-loop binding protein (SLBP)-containing histone mRNPs occurring during the switch from the actively translating mode to the degradation mode. The interaction between a CBP80/20-dependent translation initiation factor (CTIF) and SLBP, which is important for efficient histone mRNA translation, is disrupted upon the inhibition of DNA replication or at the end of S phase. This disruption is mediated by competition between CTIF and UPF1 for SLBP binding. Further characterizations reveal hyperphosphorylation of UPF1 by activated ATR and DNA-dependent protein kinase upon the inhibition of DNA replication interacts with SLBP more strongly, promoting the release of CTIF and eIF3 from SLBP-containing histone mRNP. In addition, hyperphosphorylated UPF1 recruits PNRC2 and SMG5, triggering decapping followed by 5′-to-3′ degradation of histone mRNAs. The collective observations suggest that both inhibition of translation and recruitment of mRNA degradation machinery during histone mRNA degradation are tightly coupled and coordinately regulated by UPF1 phosphorylation.  相似文献   

5.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   

6.
7.
eIF5A is highly conserved from archaea to mammals, essential for cell viability and the only protein known to contain the essential amino acid residue hypusine, generated by a unique posttranslational modification. eIF5A was originally identified as a translation initiation factor due to its ability to stimulate the formation of the first peptide bond. However, recent studies have shown that depletion of eIF5A causes a significant decrease in polysome run-off and an increase in the ribosome transit time, suggesting that eIF5A is actually involved in the elongation step of protein synthesis. We have previously shown that the depletion mutant tif51A-3 (eIF5A(C39Y/G118D)) shows a sicker phenotype when combined with the dominant negative mutant eft2 ( H699K ) of the elongation factor eEF2. In this study, we used the eIF5A(K56A) mutant to further investigate the relationship between eIF5A and eEF2. The eIF5A(K56A) mutant is temperature sensitive and has a defect in protein synthesis, but instead of causing depletion of the eIF5A protein, this mutant has a defect in hypusine modification. Like the mutant tif51A-3, the eIF5A(K56A) mutant is synthetic sick with the mutant eft2 ( H699K ) of eEF2. High-copy eEF2 not only improves cell growth of the eIF5A(K56A) mutant, but also corrects its increased cell size defect. Moreover, eEF2 suppression of the eIF5A(K56A) mutant is correlated with the improvement of total protein synthesis and with the increased resistance to the protein synthesis inhibitor hygromycin B. Finally, the polysome profile defect of the eIF5A(K56A) mutant is largely corrected by high-copy eEF2. Therefore, these results demonstrate that eIF5A is closely related to eEF2 function during translation elongation.  相似文献   

8.
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking.  相似文献   

9.
Kainuma M  Hershey JW 《Biochimie》2001,83(6):505-514
Translation initiation factor eIF1A is a highly conserved, small, acidic protein that is required for cell growth in yeast. Biochemical studies in vitro implicate eIF1A in dissociating ribosomes, promoting methionyl-tRNA(i) binding to 40S ribosomal subunits, scanning of mRNAs and recognizing the AUG initiation codon. To elucidate the pleiotropic functions of eIF1A in vivo, the factor was depleted by placing its gene behind the repressible GAL1 promoter. After Saccharomyces cerevisiae cells were shifted to glucose medium, depletion of eIF1A was seen after 3-4 generations, corresponding with cessation of cell growth. Polysome profiles of the depleted strain showed ribosome run-off from mRNAs, indicating that eIF1A is involved in the initiation phase of translation. A decrease in free 40S ribosomes and an apparent increase in free 60S ribosomes were attributed to the formation of 40S subunit dimers. The result suggests that one of the functions of eIF1A is to prevent formation of 40S dimers. Mutant forms of eIF1A lacking either the positively charged N-terminal region or the negatively charged C-terminal region were constructed and tested for their ability to confer cell growth as the sole source of eIF1A. Either deletion supports cell growth, albeit at a slower rate, and causes a reduction in polysomes, although eIF1A lacking the N-terminal region is more deleterious. Therefore the charged terminal regions contribute to, but are not absolutely essential for, eIF1A function.  相似文献   

10.
The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.  相似文献   

11.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   

12.
Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression.  相似文献   

13.
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.  相似文献   

14.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

15.
In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub‐complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP‐binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre‐initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1‐containing pre‐initiation complexes by cryo‐EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide‐binding domains, while interacting with the N‐terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C‐terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near‐complete molecular picture of the architecture and sophisticated interaction network of the 43S‐bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.  相似文献   

16.
Eukaryotic translation initiation factor 3 (eIF3) in the yeast Saccharomyces cerevisiae comprises about eight polypeptides and plays a central role in the binding of methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The fourth largest subunit, eIF3-p39, was gel purified, and a 12-amino-acid tryptic peptide was sequenced, enabling the cloning of the TIF34 gene. TIF34 encodes a 38,753-Da protein that corresponds to eIF3-p39 in size and antigenicity. Disruption of TIF34 is lethal, and depletion of eIF3-p39 by glucose repression of TIF34 expressed from a GAL promoter results in cessation of cell growth. As eIF3-p39 levels fall, polysomes become smaller, indicating a role for eIF3-p39 in the initiation phase of protein synthesis. Unexpectedly, depletion results in degradation of all of the subunit proteins of eIF3 at a rate much faster than the normal turnover rates of these proteins. eIF3-p39 has 46% sequence identity with the p36 subunit of human eIF3. Both proteins are members of the WD-repeat family of proteins, possessing five to seven repeat elements. Taken together, the results indicate that eIF3-p39 plays an important, although not necessarily direct, role in the initiation phase of protein synthesis and suggest that it may be required for the assembly and maintenance of the eIF3 complex in eukaryotic cells.  相似文献   

17.
Cytoplasmic stress granules (SGs) are specialized regulatory sites of mRNA translation that form under different stress conditions known to inhibit translation initiation. The formation of SG occurs via two pathways; the eukaryotic initiation factor (eIF) 2α phosphorylation-dependent pathway mediated by stress and the eIF2α phosphorylation-independent pathway mediated by inactivation of the translation initiation factors eIF4A and eIF4G. In this study, we investigated the effects of targeting different translation initiation factors and steps in SG formation in HeLa cells. By depleting eIF2α, we demonstrate that reduced levels of the eIF2.GTP.Met-tRNAiMet ternary translation initiation complexes is sufficient to induce SGs. Likewise, reduced levels of eIF4B, eIF4H, or polyA-binding protein, also trigger SG formation. In contrast, depletion of the cap-binding protein eIF4E or preventing its assembly into eIF4F results in modest SG formation. Intriguingly, interfering with the last step of translation initiation by blocking the recruitment of 60S ribosome either with 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamideis or through depletion of the large ribosomal subunits protein L28 does not induce SG assembly. Our study identifies translation initiation steps and factors involved in SG formation as well as those that can be targeted without induction of SGs.  相似文献   

18.
Kawabata K  Murakami A  Ohigashi H 《FEBS letters》2006,580(22):5288-5294
Matrix metalloproteinase (MMP)-7 is considered to play essential roles in cancer progression. We examined the efficacy of auraptene, a citrus coumarin derivative, for suppressing MMP-7 expression in the human colorectal adenocarcinoma cell line HT-29. Auraptene remarkably inhibited the production of proMMP-7 protein, without affecting its mRNA expression level. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), showed similar results, suggesting that auraptene suppresses mTOR-dependent proMMP-7 translation. Interestingly, however, auraptene showed no effects on the activation of Akt/mTOR signaling, whereas the phosphorylation levels of 4E binding protein (4EBP)1 and eukaryotic translation initiation factor (eIF)4B were substantially decreased. In addition, auraptene remarkably dephosphorylated constitutively activated extracellular signal-regulated kinase (ERK)1/2. Transfection of ERK1/2 siRNA led to a significant reduction of proMMP-7 protein production as well as of the phosphorylation of eIF4B. These results demonstrate that auraptene targets the translation step for proMMP-7 protein synthesis by disrupting ERK1/2-mediated phosphorylation of 4EBP1 and eIF4B.  相似文献   

19.
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号