共查询到20条相似文献,搜索用时 15 毫秒
1.
《Expert review of proteomics》2013,10(6):675-684
Mass spectrometry-based proteomics greatly benefited from recent improvements in instrument performance and the development of bioinformatics solutions facilitating the high-throughput quantification of proteins in complex biological samples. In addition to quantification approaches using stable isotope labeling, label-free quantification has emerged as the method of choice for many laboratories. Over the last years, data-independent acquisition approaches have gained increasing popularity. The integration of ion mobility separation into commercial instruments enabled researchers to achieve deep proteome coverage from limiting sample amounts. Additionally, ion mobility provides a new dimension of separation for the quantitative assessment of complex proteomes, facilitating precise label-free quantification even of highly complex samples. The present work provides a thorough overview of the combination of ion mobility and data-independent acquisition-based label-free quantification LC-MS and its applications in biomedical research. 相似文献
2.
Kai-Fu Tang Guan-Bin Song Yi-Song Shi Lin Yuan Yong-Hua Li 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
Dicer is a multidomain ribonuclease III enzyme involved in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs); depletion of Dicer was found to impair the migration of endothelial cells.Methods
siRNA transfection, cell migration assay, real-time RT–PCR, chromatin immunoprecipitation, Western blotting, ELISA, caspase-3 activity assay, and annexin-V–FITC assay were utilized.Results
Knockdown of Dicer impairs the migratory capacity of HEK293T cells and induces fibronectin-1. The upregulation of fibronectin-1 is dependent on Egr1. Fibronectin-1/Dicer double-knockdown cells showed a marked increase in apoptosis compared with fibronectin-1 single knockdown cells.Conclusions
Decreased Dicer expression induces fibronectin-1 expression via an Egr1-dependent manner.General significance
Our data suggest that upregulation of fibronectin-1 protects Dicer knockdown HEK293T cells against apoptosis. 相似文献3.
FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transiently over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, α- and especially with γ-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells. 相似文献
4.
Tian Chen Jian-Feng Xiang Shanshan Zhu Siye Chen Qing-Fei Yin Xiao-Ou Zhang Jun Zhang Hua Feng Rui Dong Xue-Jun Li Li Yang Ling-Ling Chen 《Cell research》2015,25(4):459-476
Adenosine deaminases acting on RNA (ADARs) are involved in adenosine-to-inosine RNA editing and are implicated in development and diseases. Here we observed that ADAR1 deficiency in human embryonic stem cells (hESCs) significantly affected hESC differentiation and neural induction with widespread changes in mRNA and miRNA expression, including upregulation of self-renewal-related miRNAs, such as miR302s. Global editing analyses revealed that ADAR1 editing activity contributes little to the altered miRNA/mRNA expression in ADAR1-deficient hESCs upon neural induction. Genome-wide iCLIP studies identified that ADAR1 binds directly to pri-miRNAs to interfere with miRNA processing by acting as an RNA-binding protein. Importantly, aberrant expression of miRNAs and phenotypes observed in ADAR1-depleted hESCs upon neural differentiation could be reversed by an enzymatically inactive ADAR1 mutant, but not by the RNA-binding-null ADAR1 mutant. These findings reveal that ADAR1, but not its editing activity, is critical for hESC differentiation and neural induction by regulating miRNA biogenesis via direct RNA interaction. 相似文献
5.
Vos MH Neelands TR McDonald HA Choi W Kroeger PE Puttfarcken PS Faltynek CR Moreland RB Han P 《Journal of neurochemistry》2006,99(4):1088-1102
Transient receptor potential channel type V (TRPV) 1 is a non-selective cation channel that can be activated by capsaicin, endogenous vanilloids, heat and protons. The human TRPV1 splice variant, TRPV1b, lacking exon 7, was cloned from human dorsal root ganglia (DRG) RNA. The expression profile and relative abundance of TRPV1b and TRPV1 in 35 different human tissues were determined by quantitative RT-PCR using isoform-specific probes. TRPV1b was most abundant in fetal brain, adult cerebellum and DRG. Functional studies using electrophysiological techniques showed that recombinant TRPV1b was not activated by capsaicin (1 microM), protons (pH 5.0) or heat (50 degrees C). However, recombinant TRPV1b did form multimeric complexes and was detected on the plasma membrane of cells, demonstrating that the lack of channel function was not due to defects in complex formation or cell surface expression. These results demonstrate that exon 7, which encodes the third ankyrin domain and 44 amino acids thereafter, is required for normal channel function of human TRPV1. Moreover, when co-expressed with TRPV1, TRPV1b formed complexes with TRPV1, and inhibited TRPV1 channel function in response to capsaicin, acidic pH, heat and endogenous vanilloids, dose-dependently. Taken together, these data support the hypothesis that TRPV1b is a naturally existing inhibitory modulator of TRPV1. 相似文献
6.
7.
Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods 总被引:1,自引:0,他引:1
Jakobsen L Vanselow K Skogs M Toyoda Y Lundberg E Poser I Falkenby LG Bennetzen M Westendorf J Nigg EA Uhlen M Hyman AA Andersen JS 《The EMBO journal》2011,30(8):1520-1535
Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins. 相似文献
8.
Kitajima K Miura S Yamauchi T Uehara Y Kiya Y Rye KA Kadowaki T Saku K 《Biochemical and biophysical research communications》2011,(2):305-311
A decrease in adiponectin secretion leads to the early stage of atherosclerosis. Discoidal high-density lipoproteins (HDL) accept the cholesterol that effluxes from cells expressing the ATP binding cassette transporter A1 (ABCA1) in the first step of reverse cholesterol transport (RCT). Recently, a new therapeutic strategy involving reconstituted (r)HDL has been shown to enhance RCT. Therefore, we hypothesized that adiponectin may increase the efflux associated with ABCA1 and also enhance rHDL-induced efflux in human embryonic kidney 293 (HEK293T) cells. We transfected adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2) cDNA into cells. The transfected cells were labeled with [3H]cholesterol following cholesterol loading with or without adiponectin for 24 h. The levels of cholesterol efflux were analyzed using a liquid scintillation counter. Treatment with adiponectin was associated with significantly higher levels of efflux in AdipoR1- and AdipoR2-transfected cells. Interestingly, rHDL-induced cholesterol efflux was enhanced in the presence of adiponectin. The down-regulation of adiponectin receptors using short-hairpin RNA decreased rHDL-induced cholesterol efflux with the down-regulation of ABCA1. In summary, adiponectin and its receptors increased cholesterol efflux and also enhanced rHDL-induced efflux at least partially through an ABCA1 pathway. These results suggest that adiponectin may enhance the RCT system and induce an anti-atherogenic effect. 相似文献
9.
Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension 总被引:1,自引:0,他引:1
Enhanced green fluorescence protein (GFP) and erythropoietin (EPO) were used as reporters to assess and improve transient
gene expression in HEK 293 EBNA1 cells. The production of EPO only lasted 3 days and reached 18.1 mg/l in suspension cultures
in 1 l batch bioreactors. However, GFP expression examined in well-plate experiments persisted for 12 days in transfected
cells but decreased rapidly within the next 15 days. These results suggest that the retaining of a plasmid in cells may not
be a limiting factor for protein expression in large-scale transient transfection. To improve cell maintenance and protein
expression, a fed-batch culture was performed using an enriched medium, a mixture of equal volumes of 293 SFM II medium and
a 5 × amino acid solution prepared based on DMEM/F12 medium formula. EPO reached 33.6 mg/l, representing 86% increase over
that of the batch culture. Moreover, the total amount of EPO produced was increased by 165% in view of the volume increase
in the fed-batch culture. The serum-free medium used in this work enables cells growing well and transfection without medium
change. Thus, the process reported here is simple and easy to scale up. 相似文献
10.
Kit YY Drel VR Petriv OI Kovalyova VA Shuvaeva GY Palivoda OY Vovk EI Bobak YP Rzeszowska-Wolny J Gout IT Buchman VL Drobot LB 《Biochemistry. Biokhimii?a》2003,68(7):810-815
The structural and functional organization of the adaptor protein Ruk1 is characterized by the presence of three SH3-domains at the N-terminus followed by Pro- and Ser-rich sequences and a C-terminal coiled-coil region. Multiple modules in the Ruk1 structure involved in protein–protein interactions can provide for formation of ligand clusters with varied properties and subcellular location. To study the nature and biological role of such complexes, the recombinant protein Ruk1 with a Glu-epitope at the C-terminus (Ruk1 Glu-tagged) was purified from transfected HEK293 cells by affinity chromatography on protein G-Sepharose with covalently conjugated anti-Glu-tag antibodies. By SDS polyacrylamide gel electrophoresis with subsequent staining with silver, a set of minor bands in addition to the 85-kD Ruk1 Glu-tagged was detected in the purified preparation of the recombinant protein. Proteins with affinity for nucleic acids were also revealed in the Ruk1 Glu-tagged preparation by retardation of electrophoretic mobility of 32P-labeled oligodeoxyribonucleotides in gel. The Ruk1 Glu-tagged preparation was also shown to hydrolyze both deoxyribonucleotides and plasmid DNA. ZnCl2 and heparin inhibited the DNAse activity. These findings suggest the presence of DNases associated with the Ruk1 protein in HEK293 cells. Such complexes were isolated from lysates of HEK293 cells by chromatography on heparin-Sepharose. By elution with 0.5 and 1.0 M NaCl, two fractions with DNase activity and containing proteins with molecular weights of 83, 80 and 72 kD were obtained. The reaction was inhibited by ZnCl2 and heparin, and previous precipitation of Ruk-related proteins with anti-Ruk antibodies resulted in the exhaustion of nuclease activity. By immunoblotting with anti-Ruk antibodies, 83-kD protein immunologically related to the Ruk1 protein was identified in the fractions. It was concluded that the adaptor protein Ruk1 forms complexes with endonucleases in HEK293 cells. 相似文献
11.
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in Escherichia coli forms insoluble inclusion bodies that are difficult to denature and refold. The presented results demonstrate the use of a novel HaloTag? technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10-50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1's methyltransferase activity. 相似文献
12.
13.
The TREK-1 channel, the TWIK-1-related potassium (K+) channel, is a member of a family of 2-pore-domain K+ (K2P) channels, through which background or leak K+ currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335–360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism. 相似文献
14.
Molderings GJ Bönisch H Brüss M Wolf C von Kügelgen I Göthert M 《Neurochemistry international》2007,51(8):476-485
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, 2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.
The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both. 相似文献
15.
16.
ABSTRACT: BACKGROUND: In approximately 80% of patients, ovarian cancer is diagnosed when the patient is already in the advanced stages of the disease. CA125 is currently used as the marker for ovarian cancer; however, it lacks specificity and sensitivity for detecting early stage disease. There is a critical unmet need for sensitive and specific routine screening tests for early diagnosis that can reduce ovarian cancer lethality by reliably detecting the disease at its earliest and treatable stages. Results: In this study, we investigated the N-linked sialylated glycopeptides in serum samples from healthy and ovarian cancer patients using Lectin-directed Tandem Labeling (LTL) and iTRAQ quantitative proteomics methods. We identified 45 N-linked sialylated glycopeptides containing 46 glycosylation sites. Among those, ten sialylated glycopeptides were significantly up-regulated in ovarian cancer patients' serum samples. LC-MS/MS analysis of the non-glycosylated peptides from the same samples, western blot data using lectin enriched glycoproteins of various ovarian cancer type samples, and PNGase F (+/-) treatment confirmed the sialylation changes in the ovarian cancer samples. Conclusion: Herein, we demonstrated that several proteins are aberrantly sialylated in N-linked glycopeptides in ovarian cancer and detection of glycopeptides with abnormal sialylation changes may have the potential to serve as biomarkers for ovarian cancer. 相似文献
17.
Several different types of interactions between sphingosine-1-phosphate (S1P) receptors and platelet-derived growth factor receptor (PDGFR) have been revealed recently. In this work, we used HEK293 cells to further investigate the potential crosstalk. Interestingly, we observed that S1P specifically induced a PDGFR-dependent cell detachment in HEK293 cells, which could be inhibited by AG1296, a specific inhibitor for PDGFR. EGFR on the other hand, did not have any effect on cell detachment. The detachment was extracellular matrix (ECM) protein specific, suggesting the involvement of specific integrin molecules. When beta(1) integrin was engaged into an active state, S1P-induced cell detachment was blocked, suggesting that S1P induced an inside-out inhibitory effect on beta(1) integrin. G(i) protein and ERK activation were required for the cell detachment induced by S1P, suggesting an endogenous receptor for S1P is likely to be involved. 相似文献
18.
Ohman J Jakobsson E Källström U Elmblad A Ansari A Kalderén C Robertson E Danielsson E Gustavsson AL Varadi A Ekblom J Holmgren E Doverskog M Abrahmsén L Nilsson J 《Protein expression and purification》2006,46(2):321-331
Elevated levels of semicarbazide-sensitive amine oxidase (SSAO) activity have been observed in several human conditions such as congestive heart failure, diabetes mellitus, and inflammation. The reactive aldehydes and hydrogen peroxide produced by SSAO have been suggested to contribute to the progression of vascular complications associated with these conditions. In addition, SSAO activity has been shown to be involved in the leukocyte extravasation process at sites of inflammation. To facilitate characterization and development of specific and selective inhibitors of SSAO, we have developed a method for production of recombinant human SSAO. The extracellular region (residues 29-763) of human SSAO was expressed in HEK293 cells in fusion with a mutated Schistosoma japonicum glutathione S-transferase (GST) and secreted to the culture medium. The mutGST-SSAO fusion protein was purified in a single step by glutathione-affinity chromatography followed by site-specific cleavage using a GST-3C protease fusion protein to remove the mutGST fusion partner. A second glutathione-affinity chromatography step was then used to capture both the mutGST fusion partner and the GST-3C protease, resulting in milligram quantities of pure, enzymatically active, and soluble recombinant human SSAO. 相似文献
19.
Martín SF Sawai H Villalba JM Hannun YA 《Archives of biochemistry and biophysics》2007,459(2):295-300
Phospholipases are essential enzymes in cellular signalling processes such as cellular differentiation, proliferation and apoptosis. Based on its high degree of homology with sequences of prokaryote SMases, a type of Mg(2+)-dependent PLC (nSMase-1) was recently discovered which displayed strong redox dependence for activity in vitro [F. Rodrigues-Lima, A.C. Fensome, M. Josephs, J. Evans, R.J. Veldman, M. Katan (2000), J. Biol. Chem. 275 (36) 28316-28325]. The aim of this work was to test the hypothesis that glutathione could be a natural regulator of nSMase-1 activity ex vivo. We studied how altering glutathione levels and redox ratio modulate nSMase-1 activity in a HEK293 cell line that ectopically overexpressed the nSMase-1 gene. Diminishing total glutathione with BSO without altering significantly the GSH/GSSG ratio did not affect nSMase-1 activity. Treatment of cells with diamide produced a transient decrease of total glutathione and a sharp, but also transient, decrease of the GSH/GSSG ratio. Under these conditions, nSMase-1 activity was temporarily activated and then returned to normal levels. Simultaneous treatment with BSO and diamide that resulted in permanent decreases of total glutathione and GSH/GSSG redox ratio produced a sustained activation of nSMase-1 activity. Taken together, these data indicate that altering the GSH/GSSG ratio by increasing GSSG or decreasing GSH levels, but not the total concentration of glutathione, modulates nSMase-1 activity. Our findings are the first evidence supporting the ex vivo regulation of nSMase-1 through a redox glutathione-dependent mechanism. 相似文献
20.
Serotonin activates Ras and Ras-dependent ERK1/2 phosphorylation in HEK293 cells expressing G(s)-coupled 5-HT(4) or 5-HT(7) serotonin receptors through unknown mechanisms. Both Epac/Rap-dependent and -independent pathways for Ras-dependent ERK1/2 activation have been suggested. Epac overexpression or Epac-specific 8-CPT-2'-O-Me-cAMP did not cause ERK1/2 phosphorylation, despite Rap activation. The data did not support a role for PLCepsilon or DAG-dependent Ras GEFs of the Ras-GRP family in Ras-dependent ERK1/2 phosphorylation. However, serotonin stimulated phosphorylation of endogenous and recombinant Ras-GRF1, increased [Ca(2+)](i) and caused Ca(2+)- and calmodulin-dependent ERK1/2 phosphorylation. Different signalling pathways seem to be utilised by G(s)-coupled receptors in various isolates of HEK293 cells. 相似文献