首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1-/-; p130-/- mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1-/- counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1-/-; p130-/- animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1-/- splenocytes. The finding that the p27Kip1-/-; p130-/- splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.  相似文献   

2.
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.  相似文献   

3.
4.
5.
We have engineered dihydrofolate reductase-deficient (dhfr(-)) Chinese hamster ovary (CHO)-DUKX B11 cells adapted for growth in serum-free suspension cultures for unlinked muristerone-inducible expression of the cyclin-dependent kinase inhibitor p27Kip1 and constitutive expression of the soluble intercellular adhesion molecule-1 (sICAM), a potent common cold therapeutic. Conditional overexpression of p27Kip1 resulted in a sustained G1-specific growth arrest of transgenic CHO-DUKX associated with up to fivefold-increased specific sICAM productivity. Herein we exemplify the implementation of controlled proliferation technology in a major biopharmaceutical production cell line that is compatible with key requirements for large-scale production procedures, including constitutive transgene expression and anchorage-independent growth in serum-free media.  相似文献   

6.
In response to DNA damage, a cell can be forced to permanently exit the cell cycle and become senescent. Senescence provides an early barrier against tumor development by preventing proliferation of cells with damaged DNA. By studying single cells, we show that Cdk activity persists after DNA damage until terminal cell cycle exit. This low level of Cdk activity not only allows cell cycle progression, but also promotes cell cycle exit at a decision point in G2 phase. We find that residual Cdk1/2 activity is required for efficient p21 production, allowing for nuclear sequestration of Cyclin B1, subsequent APC/CCdh1‐dependent degradation of mitotic inducers and induction of senescence. We suggest that the same activity that triggers mitosis in an unperturbed cell cycle enforces senescence in the presence of DNA damage, ensuring a robust response when most needed.  相似文献   

7.
8.
9.
Numerous changes in gene expression are known to occur during replicative senescence, including changes in genes involved in the cell cycle control. In the present study, we have found a severe impairment in the activation of Cdk2 and Cdk4 in response to mitogens in senescent human fibroblasts and determined the molecular basis for this. Although Cdk4 protein was constitutively expressed in senescent cells at the same level as in early-passage young cells, it was found to be complexed with a distinct set of Cdk inhibitors. Cdk4 derived from early passage quiescent cells was effectively activated by incubation with cyclin D1 and Cdk-activating kinase (CAK) in vitro, whereas Cdk4 from senescent cells was not. Cdk2 protein was dramatically decreased in senescent cells and complexed primarily with cyclin D1 and p21. This cyclin D1-bound Cdk2 was not activated by CAK either in vivo or in vitro, implicating cyclin D1 as an inhibitor of Cdk2 activation. Thus, one of the underlying molecular events involved in replicative senescence is the impaired activation of Cdk4 and Cdk2 due to increased binding of p16 to Cdk4 and increased association of Cdk2 with cyclin D1 and p21.  相似文献   

10.
Summary Identification of clones in primary tumors responsible for proliferation, invasion, and metastasis was carried out. Four different aneuploid established cell lines derived from a ductal infiltrating mammary rat tumor induced by 7,12-dimethylbenz[a]anthracene were studied for proliferative and growth features in vitro and for tumorigenic and metastatic potential in vivo in nude mice. Clones, named RM1, RM2, RM3, and RM4, were characterized by different proliferative activity. Clone RM1 showed the highest proliferative activity by both tritiated thymidine incorporation and S-phase flow cytometry, followed by clone RM4. Conversely, clones RM2 and RM3 showed a lower proliferation rate. Growth-promoting activity, tested on 3T3 Swiss cells, was high in all clones, although RM1 showed significantly lower growth factors—releasing activity. Nude mice tumorigenesis demonstrated a strong tumor induction of line RM1 (100% of the mice after 47±7 d) and a slightly lower tumor induction of line RM4 (70% of the mice after 69±9 d). Line RM3 showed tumor induction in 40% of the mice after 186±16 d. Lines RM2 showed no tumor induction. Metastasis occurred in mice treated with line RM1 only. Therefore, tumorigenesis and metastasis correlate with proliferation but not with the release of growth factors. In conclusion, flow cytometry monitoring of clones from heterogeneous primary tumors proved to be a suitable model for the study of in vivo malignancy and in vitro proliferation.  相似文献   

11.
12.
The DNA damage response is coordinated by phosphatidylinositol 3-kinase-related kinases, ATM, ATR, and DNA-PK. SMG-1 is the least studied stress-responsive member of this family. Here, we show that SMG-1 regulates the G1/S checkpoint through both a p53-dependent, and a p53-independent pathway. We identify Cdc25A as a new SMG-1 substrate, and show that cells depleted of SMG-1 exhibit prolonged Cdc25A stability, failing to inactivate CDK2 in response to radiation. Given an increased tumor growth following depletion of SMG-1, our data demonstrate a novel role for SMG-1 in regulating Cdc25A and suppressing oncogenic CDK2 driven proliferation, confirming SMG-1 as a tumor suppressor.  相似文献   

13.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

14.
15.
The control of glucose metabolism and the cell cycle must be coordinated in order to guarantee sufficient ATP and anabolic substrates at distinct phases of the cell cycle. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are well established regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent allosteric activator of 6-phosphofructo-1-kinase (Pfk-1). PFKFB3 is overexpressed in human cancers, regulated by HIF-1α, Akt and PTEN, and required for the survival and growth of multiple cancer types. Although most functional studies of the role of PFKFB3 in cancer progression have invoked its well-recognized function in the regulation of glycolysis, recent observations have established that PFKFB3 also traffics to the nucleus and that its product, F2,6BP, activates cyclin-dependent kinases (Cdks). In particular, F2,6BP stimulates the Cdk-mediated phosphorylation of the Cip/Kip protein p27 (threonine 187), which in turn results in p27''s ubiquitination and proteasomal degradation. As p27 is a potent suppressor of the G1/S transition and activator of apoptosis, we hypothesized that the known requirement of PFKFB3 for cell cycle progression and prevention of apoptosis may be partly due to the ability of F2,6BP to activate Cdks. In this study, we demonstrate that siRNA silencing of endogenous PFKFB3 inhibits Cdk1 activity, which in turn stabilizes p27 protein levels causing cell cycle arrest at G1/S and increased apoptosis in HeLa cells. Importantly, we demonstrate that the increase in apoptosis and suppression of the G1/S transition caused by siRNA silencing of PFKFB3 expression is reversed by co-siRNA silencing of p27. Taken together with prior publications, these observations support a model whereby PFKFB3 and F2,6BP function not only as regulators of Pfk-1 but also of Cdk1 activity, and therefore serve to couple glucose metabolism with cell proliferation and survival in transformed cells.The homodimeric bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB) phosphorylate fructose 6-phosphate (F6P) to fructose-2,6-bisphosphate (F2,6BP), which in turn activates 6-phosphofructo-1-kinase and glycolytic flux to lactate.1 Of the four genes encoding distinct PFKFB isozymes (PFKFB1-4), PFKFB3 is distinguished by the presence of multiple copies of the AUUUA instability motif in its 3''untranslated region,2 a very high kinase:phosphatase activity ratio (740 : 1),3 increased protein expression in rapidly proliferating transformed cells,2 solid tumors and leukemias2, 4, 5 and regulation by several proteins essential for tumor progression (e.g. HIF-1α,6 Akt7 and PTEN8, 9). Not surprisingly, heterozygous genomic deletion of the pfkfb3 gene has been found to reduce both the glucose metabolism and growth of Ras-transformed tumors in syngeneic mice.10In recent studies, we unexpectedly observed that PFKFB3 trafficked to the nucleus of multiple cell lines via a highly conserved nuclear localization motif in the C-terminal domain.11 Although the precise role of nuclear PFKFB3 is unknown, ectopic expression of wild-type PFKFB3 in the nucleus was found to stimulate cellular proliferation without affecting glycolysis, suggesting a novel role for nuclear F2,6BP in regulating the cell cycle.11 Moreover, the addition of F2,6BP to total cell lysates was found to increase the cyclin-dependent kinase (Cdk)-dependent phosphorylation of its substrate p27 at threonine 187 (T187), a posttranslational modification that targets p27 for degradation (i.e. high Cdk activity suppresses p27 levels).11 Given that p27 can potently block the G1/S transition and stimulate apoptosis, these data indicated that PFKFB3-mediated production of F2,6BP in the nucleus may directly stimulate Cdks to phosphorylate T187-p27, targeting p27 for degradation by the proteasome and allowing cells to both proliferate and evade apoptosis. Furthermore, these data signified that PFKFB3 may not only be essential for the regulation of glycolysis in the cytoplasm but also for the control of the cell cycle in the nucleus.Based on these prior studies, we postulated that selective inhibition of PFKFB3 would suppress Cdk1 activity, which in turn would reduce the phosphorylation of T187-p27, resulting in increased p27 expression, reduced G1/S transition and increased apoptosis. We provide evidence to support this chain of biochemical and cellular events after PFKFB3 inhibition as well as direct verification that p27 itself is required for the simultaneous suppression of G1/S transition and induction of apoptosis caused by PFKFB3 inhibition. Given that PFKFB3 inhibitors are entering phase I trials for the treatment of advanced cancers,12 we believe that this new mechanism of action may facilitate the development of rational phase I/II trials that combine other apoptosis-activating agents that disrupt p27 function (e.g. Cdk1 inhibitors) as well as potential biomarkers such as p27 that may demonstrate the on-target effects of PFKFB3 inhibitors in biopsies and resected tumors. From a broader perspective, these data provide further support for the concept that PFKFB3 may be an essential coupler of glucose metabolism and cell cycle progression.  相似文献   

16.
Chinese hamster ovary cells have been engineered to inducibly over-express the p21(CIP1) cyclin-dependent kinase inhibitor, to achieve cell cycle arrest and increase cell productivity. In p21(CIP1)-arrested cells production of antibody from a stably integrated lgG4 gene, was enhanced approximately fourfold. The underlying physiological basis for enhanced productivity was investigated by measuring a range of cellular and metabolic parameters. Interestingly, the average cell volume of arrested cells was approximately fourfold greater than that of proliferating cells. This was accompanied by significant increases in mitochondrial mass, mitochondrial activity, and ribosomal protein S6 levels. Our results suggest that p21(CIP1)-induced cell cycle arrest uncouples cell growth from cell-cycle progression, and provides new insight into how improved productivity can be achieved in a cell line commonly used for large-scale production of pharmaceutical proteins.  相似文献   

17.
18.
19.
Modified p27 Kip1 is efficient in suppressing HER2-mediated tumorigenicity   总被引:1,自引:0,他引:1  
Cyclin-dependent kinase (CDK) inhibitor p27 Kip1, a haplo-insufficient tumor suppressor, is downregulated by oncogenic signal of HER2, a receptor tyrosine kinase oncogene. HER2 promotes mitogenic growth and transformation of cancer cells. HER2 signaling can enhance p27 Kip1 ubiquitination, thereby promoting p27 degradation and subsequent activation of CDK activity. p27 ubiquitination and degradation is enhanced by JAB1 binding as well as by phosphorylation on Thr187. In this study, we generated modified p27 proteins, which are mutated at Thr 187 or deleted at JAB1 binding domain. We applied these modified p27 genes as novel anticancer agents for HER2-overexpressing cells under the control of a tetracycline (tet)-regulated gene expression system. Induction of p27 T187A and p27 T187A DeltaJAB inhibits HER2-activated cell growth, CDK2 activity, cell proliferation, and transformation. Significantly, a modified protein (p27 T187ADeltaJAB) reduced the tumor volume in a HER2-overexpressing tumor model efficiently. These findings demonstrate the applicability of employing modified p27 proteins as a therapeutic intervention in HER2-overexpressing cancers.  相似文献   

20.
Here, we discuss the findings to date about genes and pathways required for regulation of somatic follicle-cell proliferation and differentiation during Drosophila oogenesis and demonstrate how loss of these genes contributes to the tumorigenic potential of mutant cells. Follicle cells undergo cell-fate determination through stepwise activation of multiple signaling pathways, including the Notch, Hedgehog, Wingless, janus kinase/STAT, and JNK pathways. In addition, changes in DNA replication and cellular growth depend on the spatial and temporal activation of the mitotic cycle-endocycle and endocycle-gene amplification cell-cycle switches and insulin-dependent monitoring of cellular health; systemic loss of these pathways contributes to loss of controlled cellular proliferation, loss of differentiation/growth, and aberrant cell polarity in follicle cells. We also highlight the effects of the neoplastic and Hippo pathways on the cell cycle and cellular proliferation in promoting normal development and conclude that lack of coordination of multiple signaling pathways promotes conditions favorable for tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号