首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone (GH) overexpression throughout life in transgenic mice is associated with the development of liver tumors at old ages. The preneoplastic pathology observed in the liver of young adult GH-overexpressing mice is similar to that present in humans at high risk of hepatic cancer. To elucidate the molecular pathogenesis underlying the pro-oncogenic liver pathology induced by prolonged exposure to elevated GH levels, the activation and expression of several components of signal transduction pathways that have been implicated in hepatocellular carcinogenesis were evaluated in the liver of young adult GH-transgenic mice. In addition, males and females were analyzed in parallel in order to evaluate sexual dimorphism. Transgenic mice from both sexes exhibited hepatocyte hypertrophy with enlarged nuclear size and exacerbated hepatocellular proliferation, which were higher in males. Dysregulation of several oncogenic pathways was observed in the liver of GH-overexpressing transgenic mice. Many signaling mediators and effectors were upregulated in transgenic mice compared with normal controls, including Akt2, NFκB, GSK3β, β-catenin, cyclin D1, cyclin E, c-myc, c-jun and c-fos. The molecular alterations described did not exhibit sexual dimorphism in transgenic mice except for higher gene expression and nuclear localization of cyclin D1 in males. We conclude that prolonged exposure to GH induces in the liver alterations in signaling pathways involved in cell growth, proliferation and survival that resemble those found in many human tumors.  相似文献   

2.
The epidermal growth factor (EGF) activates the phosphatidylinositol 3-kinase (PI3K)-Akt cascade among other signaling pathways. This route is involved in cell proliferation and survival, therefore, its dysregulation can promote cancer. Considering the relevance of the PI3K-Akt signaling in cell survival and in the pathogenesis of cancer, and that GH was reported to modulate EGFR expression and signaling, the objective of this study was to analyze the effects of increased GH levels on EGF-induced PI3K-Akt signaling.EGF-induced signaling was evaluated in the liver of GH-overexpressing transgenic mice and in their normal siblings. While Akt expression was increased in GH-overexpressing mice, EGF-induced phosphorylation of Akt, relative to its protein content, was diminished at Ser473 and inhibited at Thr308; consequently, mTOR, which is a substrate of Akt, was not activated by EGF. However, the activation of PDK1, a kinase involved in Akt phosphorylation at Thr308, was not reduced in transgenic mice. Kinetics studies of EGF-induced Akt phosphorylation showed that it is rapidly and transiently induced in GH-overexpressing mice compared with normal siblings. Thus, the expression and activity of phosphatases involved in the termination of the PI3K-Akt signaling were studied. In transgenic mice, neither PTEN nor PP2A were hyperactivated; however, EGF induced the rapid and transient association of SHP-2 to Gab1, which mediates association to EGFR and activation of PI3K. Rapid recruitment of SHP2, which would accelerate the termination of the proliferative signal induced, could be therefore contributing to the diminished EGF-induced activity of Akt in GH-overexpressing mice.  相似文献   

3.
We have examined the effects of human growth hormone (hGH), in concentrations comparable to those measured in plasma of transgenic mice expressing foreign GHs, on rat liver cells in culture. This treatment produced, within 24 and 48 hr, extreme heterogeneity in liver cell size, enlargement of nuclei, increase in the numbers of large nucleoli and nuclear protrusions, as well as appearance of numerous lipid droplets and accumulation of glycogen. These changes most likely indicate massive metabolic alterations and resemble changes present in vivo in the livers of mice transgenic for hGH and other foreign GHs. Since morphological alterations in vitro were apparent within 24 hr, we conclude that GH acutely and directly affects liver cell morphology and function in vitro and that the pathological lesions in vivo in the livers of transgenic mice are very likely a consequence of GH action.  相似文献   

4.
Chronic exposure to growth hormone (GH) was related to the desensitization of the JAK2/STAT5 signaling pathway in liver, as demonstrated in cells, female rats, and transgenic mice overexpressing GH. The cytokine-induced suppressor (CIS) is considered a major mediator of this desensitization. Pregnancy is accompanied by an increment in GH circulating levels, which were reported to be associated with hepatic GH resistance, although the molecular mechanisms involved in this resistance are not clearly elucidated. We thus evaluated the JAK2/STAT5b signaling pathway and its regulation by the suppressors of cytokine signaling (SOCS)/CIS family and the JAK2-interacting protein SH2-Bbeta in pregnant mouse liver, a model with physiological prolonged exposure to high GH levels. Basal tyrosyl phosphorylation levels of JAK2 and STAT5b in pregnant mice were similar to values obtained for virgin animals, in spite of the important increment of GH they exhibit. Moreover, these signaling mediators were not phosphorylated upon GH stimulation in pregnant mice. A 3.3-fold increase of CIS protein content was found for pregnant mice, whereas the abundance of the other SOCS proteins analyzed and SH2-Bbeta did not significantly change compared with virgin animals. The desensitization of the JAK2/STAT5b GH signaling pathway observed in pregnant mice would then be mainly related to increased CIS levels rather than to the other regulatory proteins examined.  相似文献   

5.
The somatotropic and lactotropic receptors were studied in liver microsomal preparations from transgenic mice carrying the human growth hormone (hGH) or bovine growth hormone (bGH) gene fused to mouse metallothionein-I (MT) or phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK). Specificity studies indicated that, similarly to normal mice, liver microsomes from the transgenic animals possess a mixed population of somatotropic and lactotropic binding sites. In transgenic animals of both sexes, the binding capacity of somatotropic receptors was significantly increased without corresponding changes in affinity. Expression of the MT-hGH hybrid gene was associated with the induction of somatotropic receptors which was approximately twice as great as that measured in animals expressing the MT-bGH hybrid gene. The binding capacity of lactotropic receptors in liver microsomes (quantitated, by the use, of labelled ovine prolactin) was increased 2–3 fold in transgenic females and approximately 10-fold in transgenic males as compared to the respective normal controls. We conclude that lifelong excess of GH up-regulates hepatic GH and prolactin receptors, and that lactogenic activity of GH is not essential for induction of prolactin receptors in the liver of transgenic mice.  相似文献   

6.
Growth hormone (GH) plays an important role in growth and metabolism by signaling via at least three major pathways, including STATs, ERK1/2, and phosphatidylinositol 3-kinase/Akt. Physiological concentrations of insulin promote growth probably by modulating liver GH receptor (GHR) levels in vivo, but the possible effects of insulin on GH-induced post-GHR signaling have yet to be studied. We hypothesized that short-term insulin, similar to the fluctuations that occur following feeding, affects GH-induced post-GHR signaling. Our present studies suggest that, in rat H4IIE hepatoma cells, insulin (4 h or less) selectively enhanced GH-induced phosphorylation of MEK1/2 and ERK1/2, but not GH-induced activation of STAT5 and Akt. Although insulin pretreatment altered GH-induced formation of Shc.Grb2.SOS complex, it did not significantly affect GH-induced activation of other signaling intermediates upstream of MEK/ERK, including JAK2, Ras, and Raf-1. Immunofluorescent staining indicated that insulin pretreatment facilitated GH-induced cell membrane translocation of MEK1/2. Insulin pretreatment also increased the amount of MEK association with its scaffolding protein, KSR. In summary, short-term insulin treatment of cultured, liver-derived cells selectively sensitized GH-induced MEK/ERK phosphorylation independent of JAK2, Ras, and Raf-1, but likely resulted from increased cell membrane translocation of MEK1/2. These findings suggest that insulin may be necessary for sensitization of cells to GH-induced ERK1/2 activation and provides a potential cellular mechanism by which insulin promotes growth.  相似文献   

7.
Growth hormone significantly impacts lifespan in mammals. Mouse longevity is extended when growth hormone (GH) signaling is interrupted but markedly shortened with high‐plasma hormone levels. Methionine metabolism is enhanced in growth hormone deficiency, for example, in the Ames dwarf, but suppressed in GH transgenic mice. Methionine intake affects also lifespan, and thus, GH mutant mice and respective wild‐type littermates were fed 0.16%, 0.43%, or 1.3% methionine to evaluate the interaction between hormone status and methionine. All wild‐type and GH transgenic mice lived longer when fed 0.16% methionine but not when fed higher levels. In contrast, animals without growth hormone signaling due to hormone deficiency or resistance did not respond to altered levels of methionine in terms of lifespan, body weight, or food consumption. Taken together, our results suggest that the presence of growth hormone is necessary to sense dietary methionine changes, thus strongly linking growth and lifespan to amino acid availability.  相似文献   

8.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

9.
Obestatin, the ghrelin-associated peptide, showed to activate MAPK signaling with no effect on Akt nor cell proliferating activity in rat tumor somatotroph cells (growth cells, GC). A sequential analysis of the obestatin transmembrane signaling pathway indicated a route involving the consecutive activation of Gi, PI3k, novel PKCε, and Src for ERK1/2 activation. Furthermore, obestatin treatment triggers growth hormone (GH) release in the first 30 min, being more acute at 15 min. At 1 h, obestatin treated cells showed the same levels in GH secretion than controls. Added to this functionality, obestatin was secreted by GC cells. Based on the capacity to stimulate GH release from somatotroph cells, obestatin may act directly in the pituitary through an autocrine/paracrine mechanism.  相似文献   

10.
Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.  相似文献   

11.
After a two-thirds hepatectomy, normally quiescent liver cells are stimulated to reenter the cell cycle and proliferate to restore the original liver mass. One of the most rapidly and highly induced genes and proteins in regenerating liver is insulin-like growth factor binding protein 1 (IGFBP-1), a secreted protein that may modulate the activities of insulin-like growth factors (IGFs) or signal via IGF-independent mechanisms. To assess the functional role of IGFBP-1 in liver regeneration, mice with a targeted disruption of the IGFBP-1 gene were generated. Although IGFBP-1(-/-) mice demonstrated normal development, they had abnormal liver regeneration after partial hepatectomy, characterized by liver necrosis and reduced and delayed hepatocyte DNA synthesis. The abnormal regenerative response was associated with blunted activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and a reduced induction of C/EBP beta protein expression posthepatectomy. Like cell cycle abnormalities observed in hepatectomized C/EBP beta(-/-) mice, cyclin A and cyclin B1 expression was delayed and reduced in IGFBP-1(-/-) livers, whereas cyclin D1 expression was normal. Treatment of IGFBP-1(-/-) mice with a preoperative dose of IGFBP-1 induced MAPK/ERK activation and C/EBP beta expression, suggesting that IGFBP-1 may support liver regeneration at least in part via its effect on MAPK/ERK and C/EBP beta activities. These findings are the first demonstration of the involvement of IGFBP-1 in the regulation of in vivo mitogenic signaling pathways.  相似文献   

12.
Signaling through the target of rapamycin is required for increased protein synthesis, cell growth, and proliferation in response to growth factors. However, the downstream mediators of these responses, and the elements linking growth and proliferation, have not been fully elucidated. Rapamycin inhibits hepatocyte proliferation in culture and liver regeneration in vivo. In cultured rat hepatocytes, rapamycin prevented the up-regulation of cyclin D1 as well as proteins acting downstream in the cell cycle. Transfection with cyclin D1 or E2F2, but not cyclin E or activated Akt, overcame the rapamycin-mediated cell cycle arrest. Rapamycin also inhibited the induction of global protein synthesis after growth factor stimulation, and cyclin D1 overcame this inhibition. Rapamycin inhibited hepatocyte proliferation and cyclin D1 expression in the mouse liver after 70% partial hepatectomy. In rapamycin-treated mice, transfection with cyclin D1 induced hepatocyte proliferation, increased hepatocyte cell size, and promoted growth of the liver. These results suggest that cyclin D1 is a key mediator of increased protein synthesis, cell growth, and proliferation downstream of target of rapamycin in mitogen-stimulated hepatocytes.  相似文献   

13.
Age-associated changes in hypothalamic catalase activity and level, and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity were examined in Ames dwarf mice with growth hormone (GH) deficiency and prolonged lifespan, in PEPCK-hGH transgenic mice with overexpression of GH and reduced lifespan, and compared to values measured in normal controls. Hypothalami from young (3-4 months), middle-aged (9-10 months), and old (19-23 months) male mice were examined using spectrophotometric assay and Western blot. In dwarf mice, Cu/Zn SOD and catalase activities declined with age, and were higher than the corresponding normal values in young and middle-aged groups. Catalase levels also declined with age, but were similar to values in normal controls. In GH transgenic mice, age-associated decline of both catalase and Cu/Zn SOD occurred earlier than in normal animals. Catalase levels and activities in transgenic animals were similar to controls, whereas Cu/Zn SOD activity was higher in transgenics than in normal mice. The present results suggest that dwarf mice, during early life, have enhanced hypothalamic free radical defenses, which may contribute to their extended lifespan. However, from the present results in GH transgenic mice, it is impossible to conclude whether early decline of hypothalamic catalase and Cu/Zn SOD in these animals represents a correlate of accelerated aging, or contributes to their reduced lifespan.  相似文献   

14.
15.
The human growth hormone gene, containing mouse metallothionein gene promotor, was injected into the male pronuclei of fertilized mouse ova. The progeny of transgenic mice included animals with both accelerated and inhibited growth. Radioimmunochemical analysis has revealed human growth hormone synthesis in both groups of transgenic mice. The molecular weight of the hormone synthesized in liver cells was 25,000 daltons. A possible mechanisms of foreign hormone effect on the growth of transgenic mice is discussed.  相似文献   

16.
The physiological decline that occurs in aging is thought to result, in part, from accumulation of oxidative damage generated by reactive oxygen species during normal metabolic processes. Elevated levels of antioxidative enzymes in liver tissues are present in the Ames dwarf, a growth hormone (GH)-deficient mouse that lives more than 1 year longer than wild-type mice from the same line. In contrast, transgenic mice that overexpress GH exhibit depressed hepatic levels of catalase and have significantly shortened life spans. In this study, we evaluated the in vitro effects of GH and insulin-like growth factor 1 (IGF-1) on antioxidative enzymes in mouse hepatocytes. Hepatocytes were isolated from wild-type mice following perfusion of livers with a collagenase-based buffer. Dispersed cells were plated on Matrigel and treated with rat GH (0.1, 1.0, or 10 microg/ml) or IGF-1 (0.5, 5.0, or 50 nM) for 24 hr. Hepatocytes were recovered and protein was extracted for immunoblotting and enzyme activity assays of catalase (CAT), glutathione peroxidase (GPX), and manganese superoxide dismutase (MnSOD). A 41% and 27% decrease in catalase activity was detected in cells treated with GH, whereas IGF-1 reduced CAT activity levels to a greater extent than GH (P < 0.0001). The activity and protein levels of GPX were also significantly depressed in cells treated with GH, whereas activity alone was decreased in cells treated with IGF-1 (P < 0.04). GH significantly suppressed MnSOD levels by 40% and 66% in 1.0 and 0.1 microg/ml concentrations, respectively. Similarly, IGF-1 decreased MnSOD protein levels (5 nM; P < 0.05). These results suggest that GH and IGF-1 may decrease the ability of hepatocytes to counter oxidative stress. In addition, these experiments provide an explanation for the differing antioxidative defense capacity of GH-deficient versus GH-overexpressing mice, and they suggest that GH is directly involved in antioxidant regulation and the aging process.  相似文献   

17.
In this study we asked whether growth hormone (GH) and one of its key mediators, insulin-like growth factor I (IGF-I), influence spinal motoneuron size in conjunction with whole body size. We present evidence that GH has such a role, possibly without the mediation of IGF-I. Both lumbar motoneuron and body size were found to be increased relative to littermate controls in transgenic mice overexpressing GH, while body size, but not motoneuron size, was increased in mice overexpressing IGF-I. GH overexpression coordinately increased nucleolar, nuclear, and cell body size in lumbar spinal motoneurons, so that their normal size relationships were preserved in the transgenic mice. In addition, spinal cord and brain weights were significantly increased in both types of transgenic animal. We conclude that GH can regulate motoneuron, central nervous system, and body size in the same animal, and that IGF-I can mimic the effects of GH on at least two of these three parameters. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 202–212, 1997.  相似文献   

18.
Transgenic mice overexpressing growth hormone (GH) exhibit alterations in the function of the hypothalamic-pituitary-gonadal (HPG) axis and the H-P-adrenal axis. Alterations in the turnover of hypothalamic neurotransmitters, in plasma hormone levels, and in regulation of their release are associated with reproductive deficits, particularly in females. Results reported after publication of our minireview on this subject provided evidence that GH-transgenic mice have increased binding of GH to GH binding proteins in plasma, are hyperinsulinemic and insulin resistant, and have major alterations in energy budgets with increased allocation to growth. Reduced life span and fertility of these animals may be related to insufficient allocation of energy to reproduction and maintenance. Growth hormone resistance induced by transgenic expression of an antagonistic bGH analog or by targeted disruption (knock-out, KO) of the GH receptor (GH-R) gene leads to dramatic suppression of plasma levels of insulin-like growth factor-1 (IGF-1), and dwarf phenotype due to reduced growth and increased adiposity. In both models of GH resistance, there are marked reproductive deficits in females, decline of breeding performance of males, and alterations in the function of the HPG axis. In GH-R-KO females, puberty is delayed, and litter size is reduced. Fetal weights are reduced whereas placental weights are increased, and the weight of newborn pups is reduced despite an increase in the length of gestation. In GH-R-KO males, copulatory behavior and fertility are reduced, plasma PRL is elevated, and responses to luteinizing hormone releasing hormone (LHRH) in vivo and to LH in vitro are suppressed. However, reproductive deficits in GH-R-KO mice are very mild when compared to those described previously in IGF-KO animals. Apparently, the amounts of IGF-1 that may be produced locally in the absence of GH stimulation are sufficient for sexual maturation and fertility in both sexes, whereas quantitative deficits in reproductive function reflect absence of GH-dependent IGF-1 production and other consequences of eliminating GH signaling. The reproduction phenotype of the GH-R-KO mice is also mild when compared to dwarf mice that lack GH, prolactin (PRL), and thyroid stimulating hormone (TSH). This is presumably related to the presence of redundant mechanisms in the stimulatory control of the gonads by the pituitary and the ability of animals capable of producing PRL and TSH to compensate partially for the absence of GH signaling.  相似文献   

19.
Previously, we reported that somatostatins (SS) inhibit organismal growth by reducing hepatic growth hormone (GH) sensitivity and by inhibiting insulin-like growth factor I (IGF-I) production. In this study, we used hepatocytes isolated from rainbow trout to elucidate the mechanism(s) associated with the extrapituitary growth-inhibiting actions of SS. SS-14, a predominant SS isoform, stimulated tyrosine phosphorylation of several endogenous proteins, including extracellular signal-regulated kinase (ERK), a member the mitogen-activated protein kinase (MAPK) family, and protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K). SS-14 specifically stimulated the phosphorylation of both ERK 1/2 and Akt in a concentration-dependent fashion. This activation occurred within 5-15 min, then subsided after 1 h. The ERK inhibitor U0126 retarded SS-14-stimulated phosphorylation of ERK 1/2, whereas the PI3K inhibitor LY294002 blocked SS-14-stimulated phosphorylation of Akt. SS-14-inhibited expression of GH receptor (GHR) mRNA was blocked by U0126 but not by LY294002. By contrast, U1026 had no effect on SS-14 inhibition of GH-stimulated IGF-I mRNA expression, whereas LY294002 partially blocked the inhibition of GH-stimulated IGF-I mRNA expression by SS-14. These results indicate that SS-14-inhibited GHR expression is mediated by the ERK signaling pathway and that the PI3K/Akt pathway mediates, at least in part, SS-14 inhibition of GH-stimulated IGF-I expression.  相似文献   

20.
Insulin is an essential hormone for cell growth and potentiates the mitogenic actions of multiple growth factors, including EGF. While potentiation has been shown to be mediated by the upregulation of the cyclin/CDK system, the upstream mechanisms of such synergy have not been elucidated. Our study has examined whether insulin could mediate synergy by enhancing early signaling events of the EGF receptor (EGFR). Tyrosine phosphorylation at the cell periphery of confluent Swiss 3T3 fibroblasts induced by EGF was potentiated by insulin within 2 min of stimulation. Insulin potentiation of EGF-mediated phosphorylation of the EGFR occurred 2 min after stimulation. EGFR transactivation by insulin was not observed. In addition, downstream mitogenic signaling events including ERK1/2 activation and Elk-1 phosphorylation were enhanced in response to insulin and EGF coadministration. This study shows mitogenic synergy between insulin and EGF can occur at the earliest signaling event, receptor phosphorylation, and independent of transactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号