共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Activity of the APC(Cdh1) form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. 总被引:2,自引:0,他引:2
J N Huang I Park E Ellingson L E Littlepage D Pellman 《The Journal of cell biology》2001,154(1):85-94
Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, we demonstrate that in a normal cell cycle APC(Cdh1) is inactivated in a graded manner and is not extinguished until S phase. Complete inactivation of APC(Cdh1) requires S phase cyclins. Further, persistent APC(Cdh1) activity throughout G1 helps to ensure the proper timing of Cdc20p expression. This suggests that S phase cyclins have an important role in allowing the accumulation of mitotic cyclins and further suggests a regulatory loop among S phase cyclins, APC(Cdh1), and APC(Cdc20). 相似文献
3.
Phosphorylation of stem-loop binding protein (SLBP) on two threonines triggers degradation of SLBP,the sole cell cycle-regulated factor required for regulation of histone mRNA processing,at the end of S phase 下载免费PDF全文
Zheng L Dominski Z Yang XC Elms P Raska CS Borchers CH Marzluff WF 《Molecular and cellular biology》2003,23(5):1590-1601
4.
Valentina Bizzarro Raffaella Belvedere Emanuela Pessolano Luca Parente Francesco Petrella Mauro Perretti Antonello Petrella 《Journal of cellular physiology》2019,234(11):20174-20192
Wound healing is a dynamic process comprising multiple events, such as inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization phase is characterized by the engagement of several cell populations, mainly of keratinocytes that sequentially go through cycles of migration, proliferation, and differentiation to restore skin functions. Troubles can arise during the re-epithelialization phase of skin wound healing particularly in keratinocyte migration, resulting in chronic non-healing lesions, which represent a serious clinical problem. Over the last decades, the efforts aimed to find new pharmacological approaches for wound care were made, yet almost all current therapeutic strategies used remain inadequate or even ineffective. As such, it is crucial to identify new drugs that can enable a proper regeneration of the epithelium in wounded skin. Here, we have investigated the effects of the fibrinolytic drug mesoglycan, a glycosaminoglycans mixture derived from porcine intestinal mucosa on HaCaT human keratinocytes that were used as in vitro experimental model of skin re-epithelialization. We found that mesoglycan induces keratinocyte migration and early differentiation by triggering the syndecan-4/PKCα pathway and that these effects were at least in part, because of the formation of the annexin A1/S100A11 complex. Our data suggest that mesoglycan may be useful as a new pro-healing drug for skin wound care. 相似文献
5.
6.
Identification and characterization of P15RS, a novel P15(INK4b) related gene on G1/S progression 总被引:3,自引:0,他引:3
Liu J Liu H Zhang X Gao P Wang J Hu Z 《Biochemical and biophysical research communications》2002,299(5):880-885
To screen genes involved in P15(INK4b) regulation during cell cycle, differential display method was applied to compare mRNAs from G(1) synchronized cells of MLIK6, which overexpressed P15(INK4b) gene, and its control MLC2. By using this approach, 15 cDNA fragments that were preferentially expressed in MLIK6 cells, but not in MLC2 cells, were screened out. A novel gene named P15RS was identified with further analysis. Combining the sequence from DD-PCR, homology analysis against EST database and RACE, a 4,404 bp complete cDNA sequence of P15RS was generated. Sequence analysis revealed that P15RS cDNA encoded a 312-amino-acid peptide containing a RAR domain that is involved in regulation of nuclear pre-mRNA, which suggests that P15RS may be a nuclear regulation protein. Genomic sequence analysis demonstrated that human P15RS gene was localized on chromosome 18q12 with seven exons and six introns. Expressing antisense P15RS in MLIK6 cells can up-regulate the expression of cyclinD1 and cyclinE. These data indicate that P15RS may act as a negative regulator in G(1) phase. 相似文献
7.
8.
The human erythroleukemic cell line, K562, can be induced to differentiate by the addition of activin A, a newly purified protein belonging to the TGF-beta 1 family. The present studies used flow cytometric cell cycle analysis, indirect immunofluorescence staining of the proliferating cell nuclear antigen (PCNA), and thymidine incorporation assay of cell proliferation to study the effects of activin A on the cell cycle during differentiation in K562 cells. Activin A-treated K562 cells were found to undergo a transient block in cell cycle, temporarily halting progression from G1 to S phase. The latter can be observed after approximately 24 hr of incubation with activin A and then disappears after this early stage of induction of differentiation. Cell cycle kinetics analysis using synchronized K562 cells also confirms that in the presence of activin A, K562 cells progress normally through various phases of cell cycle, except that there is prolongation of the G1 phase between 10 to 24 hr of culture. Furthermore, this transient arrest in G1 is correlated with dephosphorylation of a nucleoprotein, the RB gene product, which occurs within 9-24 hr of incubation with activin A; and phosphorylation of RB protein then develops afterward. In addition, these cell cycle-related events are observed to occur earlier than the accumulation of hemoglobins in K562 cells. It is concluded that transient dephosphorylation of RB protein and prolongation of G1 phase of cell cycle precede and accompany erythroid differentiation caused by activin A and chemical inducers, thus constituting part of the mechanism for induction of differentiation in the erythroleukemia cells. 相似文献
9.
Guerrero M Urbano M Velaparthi S Zhao J Schaeffer MT Brown S Rosen H Roberts E 《Bioorganic & medicinal chemistry letters》2011,21(12):3632-3636
Selective S1P4 receptor antagonists could be novel therapeutic agents for the treatment of influenza infection in addition to serving as a useful tool for understanding S1P4 receptor biological functions. 5-(2,5-Dichlorophenyl)-N-(2,6-dimethylphenyl)furan-2-carboxamide was identified from screening the Molecular Libraries-Small Molecule Repository (MLSMR) collection and selected as a promising S1P4 antagonist hit with moderate in vitro potency and high selectivity against the other family receptor subtypes (S1P1-3,5). Rational chemical modifications of the hit allowed the disclosure of the first reported highly selective S1P4 antagonists with low nanomolar activity and adequate physicochemical properties suitable for further lead-optimization studies. 相似文献
10.
Gingras AR Basran J Prescott A Kriajevska M Bagshaw CR Barsukov IL 《FEBS letters》2008,582(12):1651-1656
S100A4 takes part in control of tumour cell migration and contributes to metastatic spread in in vivo models. In the active dimeric Ca(2+)-bound state it interacts with multiple intracellular targets. Conversely, oligomeric forms of S100A4 are linked with the extracellular function of this protein. We report the 1.5A X-ray crystal structure of Ca(2+)-bound S100A4 and use it to identify the residues involved in target recognition and to derive a model of the oligomeric state. We applied stopped-flow analysis of tyrosine fluorescence to derive kinetics of S100A4 activation by Ca(2+) (k(on)=3.5 microM(-1)s(-1), k(off)=20s(-1)). 相似文献
11.
Kitamura R Fukatsu R Kakusho N Cho YS Taniyama C Yamazaki S Toh GT Yanagi K Arai N Chang HJ Masai H 《The Journal of biological chemistry》2011,286(26):23031-23043
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase. 相似文献
12.
S. H. Lee J. H. J. Van Der Werf S. H. Lee E. W. Park S. J. Oh J. P. Gibson J. M. Thompson 《Animal genetics》2010,41(4):442-444
The objective of this study was to investigate an association between polymorphisms in the FABP4 gene and phenotypic variation for marbling and carcass weight (CWT) in a population of Hanwoo steers. We re‐sequenced 4.3 kb of the FABP4 gene region in 24 Hanwoo bulls and identified 16 SNPs and 1 microsatellite polymorphism. Of these 16 SNPs, three SNPs [g.2774G>C (intron I), g.3473A>T (intron II) and g.3631G>A (exon III, creating a p.Met >Val amino acid substitution)] were genotyped in 583 steers to assess their association with carcass traits. The g.3473A allele showed a significant increasing effect on CWT (P = 0.01) and the g.3631G allele was associated with higher marbling score (P = 0.006). One haplotype of these three SNPs (CAG) was significantly associated with CWT (P = 0.02) and marbling score (P = 0.05) and could potentially be of value for marker assisted selection in Hanwoo cattle. The CAG haplotype effect for CWT was larger (11.14 ± 5.03 kg) than the largest single locus effect of g.3473A>T (5.01 ± 2.2 kg). 相似文献
13.
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation. 相似文献
14.
Matthias Hoffmann Stefan Blank Dieter Seebach Ernst Küsters Emil Schmid 《Chirality》1998,10(3):217-222
The preparative separation of the enantiomers of the title compound, a versatile chiral building block for the synthesis of unnatural amino acid esters, by high performance liquid chromatography on a chiral stationary phase (CSP), is reported for the first time. The CSP consists of amylose-(3,5-dimethylphenyl-carbamate), which has been coated onto the surface of macroporous aminopropyl-functionalized silica gel. The effect of mobile phase composition and the amount of amylose derivative on the silica gel has been thoroughly investigated. Using 2-propanol as organic modifier in hexane as mobile phase, on a semi-preparative column (200 mm × 40 mm ID, containing 192 g of stationary phase) about 200 mg of the racemate was separated per injection. Running the equipment under automatic conditions with repetitive injection mode allowed for the separation of 30 g per day. Both enantiomers were obtained with enantiopurities >99.75:0.25. Chirality 10:217–222, 1998. © 1998 Wiley-Liss, Inc. 相似文献
15.
Gerd Maulthaup Hans Mechler Colin L. Masters 《Journal of molecular recognition : JMR》1995,8(4):247-257
The Alzheimer's disease βA4 amyloid precursor protein (APP) has been shown to be involved in a diverse set of biological protein precursor-like proteins (APLP1 and APLP2) belong to a superfamily of proteins that are probably functionally related. In order to characterize the cell adhesion properties of APP the brain specific isoform APP695 was purified and used to assess the binding to herparin, a structural and functional analogue of the glycosaminoglycan heparan sulfate. We show that APP binds in a time dependent and saturable manner to heparin. The salt concentration of 620 mM at which APP elutes from heparin Sepharose is greater than physiological. Tha apparent equilibrium constant for dissociation was determined to be 300 pM for APP binding to heparin Sepharose. A high affinity heparin binding site was identified within a region conversed in rodent and human APP, APLP1 and APLP2. This binding site was located between residues 316-337 of APP695 which is within the carbohydrate domain of APP. We also demonstrate an interaction between this heparin binding site and the zinc(II) binding site which is conserved in all members of the APP superfamily. We show by using an automated surface plasmon resonance biosensor (BIAcore, Pharmacia) that the affinity for heparin is increased two- to four-fold in the presence of micromolar zinc(II). The identification of zinc-enhanced binding of APP to heparin sulfate side chains of proteoglycans offers a molecular link between zinc(II), as a putative environmental toxin for Alzheimer's disease, and aggregation of amyloid βA4 protein. 相似文献
16.
17.
Abhisek Kumar Behera Ishwar Chandra 《Journal of biomolecular structure & dynamics》2016,34(9):2054-2067
Avian influenza viruses of subtype H5N1 circulating in animals continue to pose threats to human health. The binding preference of the viral surface protein hemagglutinin (HA) to sialosaccharides of receptors is an important area for understanding mutations in the receptor binding site that could be the cause for avian-to-human transmission. In the present work, we studied the effect of two receptor binding site mutations, S221P singly and in combination with another mutation K216E in the HA protein of influenza A H5N1 viruses. Docking of sialic acid ligands corresponding to both avian and human receptors and molecular dynamics simulations of the complexes for wild and mutant strains of H5N1 viruses were carried out. The H5N1 strain possessing the S221P mutation indicated decreased binding to α2,3-linked sialic acids (avian receptor, SAα2,3Gal) when compared to the binding of the wild-type strain that did not possess the HA-221 mutation. The binding to α2,6-linked sialic acids (human receptor, SAα2,6Gal) was found to be comparable, indicating that the mutant strain shows limited dual receptor specificity. On the other hand, the S221P mutation in synergism with the K216E mutation in the binding site, resulted in increased binding affinity for SAα2,6Gal when compared to SAα2,3Gal, indicative of enhanced binding to human receptors. The in-depth study of the molecular interactions in the docked complexes could explain how co-occurring mutations in the HA viral protein can aid in providing fitness advantage to the virus, in the context of host receptor specificity in emerging variants of H5N1 influenza viruses. 相似文献
18.
Carolyn M. Porteous David K. Menon Franklin I. Aigbirhio Robin A.J. Smith Michael P. Murphy 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs.Methods
To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp.Results
There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls.Conclusion
Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver.General significance
These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. 相似文献19.
20.
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory. 相似文献