首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reevaluation of the Role of Gangliosides as Receptors for Tetanus Toxin   总被引:2,自引:2,他引:2  
Binding of tetanus toxin to rat brain membranes was of lower affinity and capacity when binding was determined in 150 mM NaCl, 50 mM Tris-HCl (pH 7.4) than in 25 mM Tris-acetate (pH 6.0). Binding under both conditions was reduced by treating the membranes with neuraminidase. Pronase treatment, however, reduced toxin binding only in the Tris-saline buffer (pH 7.4). In addition, the concentration of gangliosides required to inhibit toxin binding was 100-fold higher in Tris-saline compared to Tris-acetate buffer. The toxin receptors in the membranes were analyzed by ligand blotting techniques. Membrane components were dissolved in sodium dodecyl sulfate, separated by polyacrylamide gel electrophoresis, and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled toxin. Tetanus toxin bound only to material that migrated in the region of the dye front and was extracted with lipid solvents. Gangliosides isolated from the lipid extracts or other sources were separated by TLC on silica gel and the chromatograms were overlaid with labeled tetanus toxin. The toxin bound to areas where the major rat brain gangliosides migrated. When equimolar amounts of different purified gangliosides were applied to the chromatogram, binding of the toxin was in the order GD1b approximately equal to GT1b approximately equal to GQ1b greater than GD2 greater than GD3 much greater than GD1a approximately equal to GM1. Thus, the toxin appears to have the highest affinity for gangliosides with a disialyl group linked to the inner galactosyl residue. When binding of tetanus toxin to transfers and chromatograms was determined in the Tris-saline buffer (pH 7.4), the toxin bound to the same components but the extent of binding was markedly reduced compared with the low-salt and -pH conditions. Our results indicate that the interaction of tetanus toxin with rat brain membranes and gangliosides is greatly reduced under more physiological conditions of salt and pH and raise the possibility that other membrane components such as sialoglycoproteins may be receptors for the toxin under these conditions.  相似文献   

2.
Abstract Ca2+-dependent K+-stimulated γ-aminobutyric acid release from rat hippocampal slices was reduced about 30% by pre-incubation of the slices with 104 mouse LD50/ml tetanus toxin for 3 h at 37°C.  相似文献   

3.
Abstract: Preincubation of botulinum neurotoxin serotype A, B, or E with ganglioside GT1b was previously found to enhance adherence of botulinum neurotoxin to synapsin I and an ∼116-kDa bovine brain synaptosomal protein; in contrast, adherence to these two proteins by tetanus neurotoxin required preincubation with GT1b. We have now found that preincubation of the neurotoxins with ganglioside GD3 enhances their adherence to the ∼116-kDa protein more than that with GT1b. A purified preparation of the water-soluble ∼116-kDa protein was obtained from bovine brain synaptosomes by preparative column sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. N-Terminal amino acid sequences were obtained for two tryptic fragments of the ∼116-kDa protein. These sequences matched with the data bank sequences for β-adducin, a cytoskeletal protein. The carboxy-terminal tail region of adducin, but not the head region, was adhered to by the neurotoxins. Adherence of the neurotoxin to adducin and synapsin I may facilitate presentation of the neurotoxin to its specific substrate(s).  相似文献   

4.
Abstract: Tetanus toxin (TeTx) has been recently demonstrated to be a Zn2+-dependent endopeptidase that cleaves synaptobrevin, a protein in part responsible for neurotransmitter release. Nevertheless, certain aspects of TeTx action, for example, the causal relationship between TeTx and protein kinase C (PKC; EC 2.7.1.37) activity cannot be explained by this cleavage alone. In the present study, primary neurons from fetal rat brain, synaptosomes, and whole slices have been used to examine this issue. Low doses of TeTx (≤ 10?8M) caused PKC activity translocation in a manner similar to that produced by 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA (≤ 10?7M) caused sustained PKC activity translocation, whereas TeTx produced translocation followed by relocation, depending on the dose and time of exposure. Immunoidentification with a monoclonal antibody recognizing both α and β isoforms revealed that TeTx induced moderate losses of PKC in the cytosolic fraction, without a comparable increase in the particulate fraction. Although moderate losses of activity were also noticed in the cytosolic fraction, the inconsistency with respect to activity translocation may be explained by translocation of additional PKC isoforms that are not identified by the antibody. Comparable levels of water-soluble inositol phosphate-labeled intermediates were obtained after treatment of cerebral cells and/or cortical brain slices with TeTx. Significant increases of 19 and 114% in the water-soluble myo-[2-3H]inositol-labeled inositol phosphate metabolites were found in cerebral cell culture and brain slices, respectively, after treatment with 10?8M TeTx. TeTx (10?8M) increased to the same degree the water-soluble inositol phosphate levels as did serotonin (10?5M) or carbachol (10?6M). It is suggested that part of the signaling cascade of TeTx consists of a component involving inositol phospholipid hydrolysis, which is associated with PKC activity translocation.  相似文献   

5.
Abstract: A single dose of 0.25 ng of tetanus toxin (TeTx), equivalent to ∼5 minimal lethal doses, injected intracerebrally to 1-day-old rats, caused translocation, i.e., activation, of Ca2+-phosphatidylserine-dependent protein kinase C (PKC) from the cytosolic to the membrane compartment within 1 h. Six hours after treatment with the toxin, a 40–50% reduction in the total brain PKC (cytosolic plus membrane) activity was noticed. GT1b (2 μg per brain) ganglioside, a putative receptor for TeTx, completely prevented enzyme translocation when injected intracerebrally 30 min before toxin administration and abolished down-regulation after 6 h from the time of toxin injection. GM1 (2 μg per brain), a ganglioside of lesser affinity for TeTx, produced by itself a 20–30% reduction of the total PKC activity and did not reverse TeTx-induced PKC down-regulation after 6 h. 12- O -Tetradecanoylphorbol 13-acetate (TPA) phorbol ester, administered at a concentration of 5 × 10−5 M , caused activation and down-regulation of the enzyme, although with several orders of magnitude lesser potency. GT1b prevented the TPA-induced down-regulation.  相似文献   

6.
Synapsin I, a prominent phosphoprotein in nerve terminals, is proposed to modulate exocytosis by interaction with the cytoplasmic surface of small synaptic vesicles and cytoskeletal elements in a phosphorylation-dependent manner. Tetanus toxin (TeTx), a potent inhibitor of neurotransmitter release, attenuated the depolarization-stimulated increase in synapsin I phosphorylation in rat cortical particles and in synaptosomes. TeTx also markedly decreased the translocation of synapsin I from the small synaptic vesicles and the cytoskeleton into the cytosol, on depolarization of synaptosomes. The effect of TeTx on synapsin I phosphorylation was both time and TeTx concentration dependent and required active toxin. One- and two-dimensional peptide maps of synapsin I with V8 proteinase and trypsin, respectively, showed no differences in the relative phosphorylation of peptides for the control and TeTx-treated synaptosomes, suggesting that both the calmodulin- and the cyclic AMP-dependent kinases that label this protein are equally affected. Phosphorylation of synapsin IIb and the B-50 protein (GAP43), a known substrate of protein kinase C, was also inhibited by TeTx. TeTx affected only a limited number of phosphoproteins and the calcium-dependent decrease in dephosphin phosphorylation remained unaffected. In vitro phosphorylation of proteins in lysed synaptosomes was not influenced by prior TeTx treatment of the intact synaptosomes or by the addition of TeTx to lysates, suggesting that the effect of TeTx on protein phosphorylation was indirect. Our data demonstrate that TeTx inhibits neurotransmitter release, the phosphorylation of a select group of phosphoproteins in nerve terminals, and the translocation of synapsin I. These findings contribute to our understanding of the basic mechanism of TeTx action.  相似文献   

7.
The fate of tetanus toxin bound to neuronal cells at 0 degree C was followed using an anti-toxin 125I-protein A assay. About 50% of surface-bound toxin disappeared within 5 min of warming cells to 37 degrees C. Experiments with 125I-toxin showed that much of this loss was due to dissociation of bound toxin into the medium. Some toxin was however rapidly internalised, and could be detected only by permeabilizing cells with Triton X-100 prior to assay. To investigate the mechanism of internalisation, tetanus toxin was adsorbed to colloidal gold. Toxin-gold was shown to be stable, and to recognise the same receptor(s) as free toxin. Quantitation of the distribution of toxin-gold particles bound to the cell body at 4 degrees C showed that it was concentrated in coated pits. After 5 min at 37 degrees C, toxin-gold appeared in coated vesicles, endosomes, and tubules. After 15 min, it was found largely in endosomes, and at 30 min in multivesicular bodies. The involvement of coated pits in internalisation of tetanus toxin, but not cholera toxin, was confirmed using the free toxins, anti-toxins, and protein A-gold. Toxin-gold also entered nerve terminals and axons via coated pits, accumulating in synaptic vesicles and intraaxonal uncoated vesicles, respectively.  相似文献   

8.
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+-dependent secretion of [3H]norepinephrine from digitonin-permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with monoclonal antibodies to the light chain prevented the inhibition by tetanus toxin. Preincubation of tetanus toxin with nonimmune ascites fluid or with monoclonal antibodies directed against the C fragment (the C-terminal of the heavy chain) or the heavy-chain portion of the B fragment did not prevent inhibition by tetanus toxin. The data indicate that the light chain is responsible for the intracellular blockade of exocytosis.  相似文献   

9.
A single intraventricular injection of tetanus toxin produced a time-dependent elevation of serotonin levels in brain and spinal cord of adult rats. This tetanus toxin-induced increase was produced in areas of high density of serotonergic innervation, such as the hypothalamus, hippocampus, and spinal cord. Little or no effect was found in the thalamus, cerebellum, and frontal cortex, areas that are poorly innervated by serotonergic terminals. The responses of catecholamines (no change in dopamine level and generalized decrease in norepinephrine) pointed to a specific action of tetanus toxin on the serotonergic system. Stereotaxic injections of tetanus toxin in dorsal or magnus raphe nuclei did not have an evident effect on biogenic amine levels in the brain and spinal cord, respectively. Because direct stereotaxic injections of the toxin in the hypothalamus or hippocampus produced significant serotonin increases in both areas, it is proposed that tetanus toxin interacts with presynaptic targets to produce serotonin accumulation; this is probably due in part to an activation of tryptophan 5-hydroxylase.  相似文献   

10.
A single intraventricular injection into adult rats of 100 mouse lethal doses of tetanus toxin (TeTox) produces a marked intracellular redistribution of Ca2+/phosphatidylserine (PtdSer)-dependent protein kinase C (PKC) activity. Changes are particularly pronounced in hypothalamus, hippocampus, and spinal cord structures. Translocation of PKC from the inactive cytosolic compartment to a membrane-bound active form is followed by a time-dependent reduction in both total activity and enzyme protein. The down-regulation of PKC activity in the hypothalamus is accompanied by a marked increase in a Ca2+/PtdSer-independent kinase activity, predominantly in the cytosolic fraction. Our data identify PKC as a possible indirect target for TeTox and suggest that down-regulation of the enzyme may provide a clue for tetanus neurotoxicity.  相似文献   

11.
Abstract: Tetanus toxin (TeTX) has been demonstrated to inhibit transmitter release by two mechanisms: Zn2+-dependent proteolytic cleavage of synaptobrevin and activation of a neuronal transglutaminase. Herein, attenuation of TeTX-induced blockade of noradrenaline release from synaptosomes was achieved by prior disassembly of microfilaments with cytochalasin D or breakdown of microtubules by colchicine or nocodazole. These drugs and monodansylcadaverine, a transglutaminase inhibitor, displayed some additivity in antagonizing the inhibitory effect of the toxin on synaptosomal transmitter release; as none of them reduced synaptobrevin cleavage, all appear to work independently of the toxin's proteolytic action. Prior stabilization of microtubules with taxol prevented the antagonism seen with colchicine, highlighting that this cytoskeletal component is the locus of the effect of colchicine. Replacement of Ca2+ with Ba2+ caused disappearance of the fraction of evoked secretion whose inhibition by TeTX is reliant on polymerized actin but did not alter the blockade by toxin that is dependent on microtubules. Two temporally distinguished phases of release were reduced by TeTX, and colchicine lessened its effects on both. Blockade of the fast phase (≤10 s) of secretion by TeTX was unaffected by cytochalasin D, but it clearly antagonized the toxin-induced inhibition of the slow (10-s to ≥5-min) component; it is notable that such antagonism was accentuated during a second bout of evoked release. These findings are consistent with sustained release requiring dissociation of synaptic vesicles from the microfilaments, a step that seems to be perturbed by TeTX.  相似文献   

12.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

13.
The present study deals with the developmental profile of cytosolic and membrane-bound gangliosides in rabbit whole brain from the 21st day of pregnancy, the time at which brain could be macroscopically recognized and handled, till birth. In this period of prenatal life the content of membrane-bound gangliosides showed a 2.5-fold increase, referred to fresh and dry brain weight and to membrane-bound protein; the content of cytosolic gangliosides reached a maximum at 21-22 days of pregnancy, and then underwent to birth a threefold diminution. The qualitative pattern of membrane-bound gangliosides, in the same period of life, was characterized by an increase of GD1a and GM1 (more marked for GD1a), a decrease of GT1a, GT1b and GQ1b and a constant level of GD3 and GD1b. At 21 days of pregnancy the most abundant gangliosides were GT1b, and GQ1b, followed by GD1a and GD1b; at birth it was GD1a followed by GT1b GD1b, and GM1 The qualitative pattern of cytosolic gangliosides closely resembled, during the entire period of prenatal life examined, that of membrane-bound gangliosides.  相似文献   

14.
目的:研究炭疽致死毒素在巨噬细胞中引起细胞自噬现象以及细胞自噬对炭疽致死毒素毒性的影响。方法:采用电子显微镜观察、单丹磺酰尸胺(MDC)荧光染色、Western印迹检测研究炭疽致死毒素作用后的巨噬细胞;采用MTT法检测细胞自噬对炭疽致死毒素毒性的影响。结果:采用以上3种方法,在巨噬细胞J774A.1中均可检测到细胞自噬现象;通过诱导或抑制细胞自噬,分别提高或降低了炭疽致死毒素的半数致死浓度。结论:炭疽致死毒素在巨噬细胞内能引起细胞自噬现象;细胞自噬能减弱炭疽致死毒素对巨噬细胞的毒性。  相似文献   

15.
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis.  相似文献   

16.
Endogenous amino acid release was measured in developing cerebellar neuronal cells in primary culture. In the presence of 25 mM K+ added to the culture medium, cerebellar cells survived more than 3 weeks and showed a high level of differentiation. These cultures are highly enriched in neurons, and electron-microscopic observation of these cells after 12 days in vitro (DIV) confirmed the presence of a very large proportion of cells with the morphological characteristics of granule cells, making synapses containing many synaptic vesicles. Synaptogenesis was also confirmed by immunostaining the cells with antisera against synapsin I and synaptophysin, two proteins associated with synaptic vesicles. From these cultures, endogenous glutamate release stimulated by 56 mM K+ was already detected after only a few days in culture, the maximal release value (1,579% increase over basal release) being reached after 10 DIV. In addition to that of glutamate, the release of aspartate, asparagine, alanine, and, particularly, gamma-aminobutyric acid (GABA) was stimulated by 56 mM K+ after 14 DIV, but to a lesser extent. No increase in serine, glutamine, taurine, or tyrosine release was observed during K+ depolarization. The effect of K+ on amino acid release was strictly Ca2+-dependent. Stimulation of the cells with veratridine resulted in a qualitatively similar effect on endogenous amino acid release. In the absence of Ca2+, 30% of the veratridine effect persisted. The Ca2+-dependent release was quantitatively similar after stimulation by veratridine and K+. Treatment of cerebellar cells with tetanus toxin (5 micrograms/ml) for 24 h resulted in a total inhibition of the Ca2+-dependent component of the glutamate release evoked by K+ or veratridine. It is concluded that glutamate is the main amino acid neurotransmitter of cerebellar cells developed in primary culture under the present conditions and that glutamate is probably mainly released through the exocytosis of synaptic vesicles.  相似文献   

17.
Abstract: Tetanus toxin is a potent neurotoxin that is widely considered to produce its effect through impairment of inhibitory neurotransmission. We report the effect of a single unilateral intrahippocampal injection of tetanus toxin on extracellular levels of neuroactive amino acids in freely moving rats, at times ranging between 1 and 7 days posttreatment. Tetanus toxin treatment did not alter extracellular levels of aspartate, glutamate, and taurine at any time during the study. However, although extracellular GABA levels were unaffected by toxin injection 1, 2, and 3 days after treatment, they were reduced (45 ± 8% of contralateral vehicle-injected level) at day 7. Challenge with a high K+ concentration, 7 days after treatment, produced elevations in extracellular levels of taurine and GABA in both vehicle- and toxin-injected hippocampi, with evoked levels of GABA being lower in the toxin-treated side (39 ± 16% of contralateral vehicle-injected level). Aspartate and glutamate levels were not increased by high-K+ infusion. These findings are discussed in relation to the possible role that an imbalance in excitatory/inhibitory tone may play in the production of tetanus toxin-induced neurodegeneration.  相似文献   

18.
Abstract: Tetanus toxin (TeNT) is one of the clostridial neurotoxins that act intracellularly to block neurotransmitter release. However, neither the route of entry nor the mechanism by which these toxins gain access to the neuronal cytoplasm has been established definitively. In murine spinal cord cell cultures, release of the neurotransmitter glycine is particularly sensitive to blockade by TeNT. To test whether TeNT enters neurons through acidic endosomes or is routed through the Golgi apparatus, toxin action on potassium-evoked glycine release was assayed in cultures pretreated with bafilomycin A1 (baf A1) or brefeldin A (BFA). baf A1, which inhibits the vacuolar-type H+-ATPase responsible for endosome acidification, diminishes the staining of acidic compartments and interferes with the action of TeNT in a dose-dependent manner. TeNT blockade of evoked glycine release is inhibited by 50 and 90% in cultures pretreated with 50 and 100 n M baf A1, respectively, compared with cultures treated with the inhibitor alone. The effects of baf A1 are fully reversible. In contrast, BFA, which disrupts Golgi function, has no effect on TeNT action. These findings provide evidence that TeNT enters the neuronal cytoplasm through baf A1-sensitive acidic compartments and that TeNT is not trafficked through the Golgi apparatus before its translocation into the neuronal cytosol.  相似文献   

19.
Tetanus toxin (TeTx) forms ionic channel in phosphatidylserine bilayers. TeTx channels exhibit different modes of channel bursting activity, from a closed state to well defined open states of different amplitudes. At positive applied voltages, TeTx channels flicker continuously between a closed state and the various distinct open states. Furthermore, fast transitions into subconductance states are discernible within the bursts of channel activity. Elementary conductance steps submultiple of the open states were not identified in single channel records owing to rapid transitions between different states. However, statistical analysis shows that conductances cluster with amplitudes multiple of an elementary value: e.g. 25–30 pS at neutral pH. Single channel current amplitudes decrease with the pH of the bulk electrolyte solution. Conductance decrements can be accounted for by the relative decrease of permeant cation concentration at the membrane-water interface, by a relative enrichment of protons that block the channel or by the stabilization of a conformational state of the channel protein. Offprint requests to: F. Gambale  相似文献   

20.
Calmodulin-dependent kinase activity was investigated in cold-stable microtubule fractions. Calmodulin-dependent kinase activity was enriched approximately 20-fold over cytosol in cold-stable microtubule preparations. Calmodulin-dependent kinase activity in cold-stable microtubule preparations phosphorylated microtubule-associated protein-2, alpha- and beta-tubulin, an 80,000-dalton doublet, and several minor phosphoproteins. The endogenous calmodulin-dependent kinase in cold-stable microtubule fractions was identical to a previously purified calmodulin-dependent kinase from rat brain by several criteria including (1) subunit molecular weights, (2) subunit isoelectric points, (3) calmodulin-binding properties, (4) subunit autophosphorylation, (5) calmodulin-binding subunit composition on high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (6) isolation of kinase on calmodulin affinity resin, (7) kinetic parameters, (8) phosphoamino acid phosphorylation sites on beta-tubulin, and (9) phosphopeptide mapping. Endogenous cold-stable calmodulin-dependent kinase activity was isolated from the microtubule fraction by calmodulin affinity resin column chromatography and specifically eluted with EGTA. This kinase fraction contained the calmodulin-binding, autophosphorylating rho and sigma subunits of the previously purified kinase. The rho and sigma subunits of this kinase represented the major calmodulin-binding proteins in the cold-stable microtubule fractions as assessed by denaturing and non-denaturing procedures. These results indicate that calmodulin-dependent kinase is a major calmodulin-binding enzyme system in cold-stable microtubule fractions and may play an important role in mediating some of the effects of calcium on microtubule and cytoskeletal dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号