首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine whether catalytic hydrolysis of acetylcholine, observed in muscle microsomes enriched in sarcoplasmic reticulum membranes, was carried out by true acetylcholinesterase we studied the substrate specificity of this enzyme, its kinetic behaviour and its sensitivity against several reversible inhibitors. The results showed that the enzyme from muscle microsomes had acetylcholine (or acetylthiocholine) as the preferent substrate and was also able to hydrolyze acetyl-beta-methylcholine. The enzyme had a Km of 100-120 microM, being inhibited by a high substrate concentration. Acetylcholinesterase in this source was competitively inhibited by BW-284-c-51, eserine and decamethonium with ki values of 0.025 microM, 0.021 microM and 65 microM, respectively. The enzyme was poorly inhibited by the pseudocholinesterase inhibitor ethopropazine. The results show that the hydrolytic enzyme is indeed acetylcholinesterase.  相似文献   

2.
Choline, acetylcholine and betaine used as the sole carbon, nitrogen or carbon and nitrogen source increase cholinesterase activity in addition to phosphorylcholine phosphatase and phospholipase C activities in Pseudomonas aeruginosa. The cholinesterase activity catalyses the hydrolysis of acetylthiocholine (Km approx. 0.13 mM) and propionylthiocholine (Km approx. 0.26 mM), but not butyrylthiocholine, which is a pure competitive inhibitor (Ki 0.05 mM). Increasing choline concentrations in the assay mixture decreased the affinity of cholinesterase for acetylthiocholine, but in all cases prevented inhibition raised by high substrate concentrations. Considering the properties of these enzymes, and the fact that in the corneal epithelium there exists a high acetylcholine concentration and that Pseudomonas aeruginosa produces corneal infection, it is proposed that these enzymes acting coordinately might contribute to the breakdown of the corneal epithelial membrane.  相似文献   

3.
The influence of habitat conditions on the activity, the structure of the substrate specificity (the ratio of the substrate hydrolysis rates), and the kinetic parameters of substrate hydrolysis due to the effect of hemolymph cholinesterase of the mussel Crenomytilus grayanus was studied. Mussels were collected from areas that are influenced by seasonal and stationary upwelling, as well as from a polluted area. Upwelling and anthropogenic pressure were shown to alter the structure of hemolymph cholinesterase substrate specificity in mussels, up to complete loss of the ability to catalyze the hydrolysis of propionyland butyrylthiocholine. It was established that during the seasonal upwelling the efficiency of the cholinergic process in mussels is provided by a wide range of effective concentrations of the substrates and by decreasing their affinity to the enzyme. Under the conditions of chronic anthropogenic pollution, the cholinesterase of the mussel hemolymph loses its ability to hydrolyze substrates other than acetylthiocholine.  相似文献   

4.
The monoclonal antibody (mAb) AE-2 decreases the rate of hydrolysis of acetylthiocholine (ATC) by fetal bovine serum acetylcholinesterase (acetylcholine acetylhydrolase EC 3.1.1.7) (FBS-AChE) (Doctor, B.P. et al. (1989) Proc. 32nd Oholo Conf., Eilat, Israel, in press), but increases the rate of hydrolysis (Vmax) of the nonpolar substrate, indophenyl acetate (IPA) approx. 15-fold. The affinity (Km) of FBS-AChE for IPA changes minimally in comparison with the increase in the rate of hydrolysis. The complex is dissociated, and the modulation of substrate hydrolysis is reversed by the active-center ligand, 1-methyl-2-hydroxyiminomethylpyridinium chloride (2-PAM).  相似文献   

5.
In the seeds ofAllium altaicun (Pall.)Reyse a set of enzymes was found, metabolizing choline esters, composed of active choline esterases and choline acetyltransferase. Choline esterase cleaving acetylcholine occurs in five isoenzymes. The enzyme preparation hydrolyses strongly acetylthiocholine and sinapine, but weakly butyrylthiocholine (20%) in comparison with acetylthiocholine. The hydrolysis of the substrates mentioned is inhibited by physostigmine and neostigmine, but it is not inhibited by the specific inhibitor of acetylcholine esterase (BW 284 C51). In addition to hydrolytic activity a strong catalytic activity of choline acetyltransferase was also observed during the synthesis of sinapine from sinapic acid and choline. The detection of the mentioned enzymes in some representatives of theAllium genus indicates that choline esterases are more widely distributed in monocotyledons than previously assumed.  相似文献   

6.
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.  相似文献   

7.
The highly active esterases A' and B that cannot be dissociated from OP resistance in Culex pipiens from France and California are shown to have equivalent Km values (2.1 x 10(-6) M/min/mosquito) but different turnover rates (Vm = 2.13 and 0.57 x 10(-6) M/min/mosquito, respectively) and pH for maximum activity. Both enzymes have broad substrate specificities and at least one, esterase A', can hydrolyze OP insecticides. In addition, esterases A' and B are coded by two closely linked genes, Est-3 and Est-2, respectively (0.67 unit of crossing over), located on the same autosome as pl, a locus attributed to linkage group III. The estimated distance between Est-2 and pl was 9.4 units.  相似文献   

8.
Sodium chloride, phosphate buffer and ethanol were studied for their effect on butyryl cholinesterase hydrolysis rate of acetylcholine, acetylthiocholine, butyrylthiocholine and nonion substrate of indophenylacetate. The concentrations of 1.10(-2) = 1.10(-1) M of sodium chloride activated enzymatic hydrolysis of ion substrates at the concentrations lower than 1.10(-4) M but sodium chloride is a competitive inhibitor at higher concentrations. Phosphate buffer also activates substrates enzyme hydrolysis at the concentrations of 2.10(-4) M and lower, but it inhibits incompetitively the nonion substrate indophenylacetate hydrolysis. Ethanol activates butyrylthiocholine hydrolysis and is a competitive inhibitor in acetylthiocholine and indophenylacetate hydrolysis. The observed effects are discussed on the assumption of two forms of butyrylcholinesterase E' and E" existence. These two forms are determined by different kinetic parameters and are in equilibrium.  相似文献   

9.
Cell surface ATPases (ecto-ATPases or E-ATPases) hydrolyze extracellular ATP and other nucleotides. Regulation of extracellular nucleotide concentration is one of their major proposed functions. Based on enzymatic characterization, the E-ATPases have been divided into two subfamilies, ecto-ATPases and ecto-ATP-diphosphohydrolases (ecto-ATPDases). In the presence of either Mg2+ or Ca2+, ecto-ATPDases, including proteins closely related to CD39, hydrolyze nucleoside diphosphates in addition to nucleoside triphosphates and are inhibited by millimolar concentrations of azide, whereas ecto-ATPases appear to lack these two properties. This report presents the first systematic kinetic study of a purified ecto-ATPDase, the chicken oviduct ecto-ATPDase (Strobel, R.S., Nagy, A.K., Knowles, A.F., Buegel, J. & Rosenberg, M.O. (1996) J. Biol. Chem. 271, 16323-16331), with respect to ATP and ADP, and azide inhibition. Km values for ATP obtained at pH 6.4 and 7.4 are 10-30 times lower than for ADP and the catalytic efficiency is greater with ATP as the substrate. The enzyme also exhibits complicated behavior toward azide. Variable inhibition by azide is observed depending on nucleotide substrate, divalent ion, and pH. Nearly complete inhibition by 5 mm azide is obtained when MgADP is the substrate and when assays are conducted at pH 6-6.4. Azide inhibition diminishes when ATP is the substrate, Ca2+ as the activating ion, and at higher pH. The greater efficacy of azide in inhibiting ADP hydrolysis compared to ATP hydrolysis may be related to the different modes of inhibition with the two nucleotide substrates. While azide decreases both Vmax and Km for ADP, it does not alter the Km for ATP. These results suggest that the apparent affinity of azide for the E.ADP complex is significantly greater than that for the free enzyme or E.ATP. The response of the enzyme to three other inhibitors, fluoride, vanadate, and pyrophosphate, is also dependent on substrate and pH. Taken together, these results are indicative of a discrimination between ADP and ATP by the enzyme. A mechanism of azide inhibition is proposed.  相似文献   

10.
Laboratory toxicity bioassays using chlorpyrifos (Dursban) confirmed the notion that development of resistance is responsible for widespread failures to control the California red scale, Aonidiella aurantii (Mask.) by applying organophosphorus (OP) compounds in citrus groves in Israel. Higher Vmax values of acetylcholinesterase (AChE) activity (9–13 fold) were measured in resistant strains collected from the field as compared to a susceptible line. No differences were found with respect to Km values using acetylthiocholine iodide as a substrate, or degree of inhibition (expressed by IC50 values) by the OP compounds chlorpyrifos-oxon and paraoxon and the carbamate pirimicarb. We suggest that resistance of the California red scale is caused by excess of AChE molecules able to bind and thus scavenge inhibitory OP compounds. This scavenging mechanism related to AChE may be similar in other insect species where elevated levels of detoxifying esterases were implicated in conferring OP resistance.  相似文献   

11.
Acetylcholinesterase from Electrophorus electricus was acetylated during the hydrolysis of [3H]acetylcholine and [3H]acetylthiocholine. The steady state levels of [3H]acetyl-enzyme were measured at different pH and different concentrations of substrate. The maximum acetylation fraction [S)----infinity) at pH 7.0 in 0.5 M salt was 0.65 with acetylcholine as substrate and 0.57 with acetylthiocholine as substrate. Acetylation is faster than deacetylation. The fraction of acetyl-enzyme was not affected by pH which indicates that acetylation and deacetylation are equally affected by changes in pH. This results supports the concept that acetylation and deacetylation involve similar mechanisms.  相似文献   

12.
Hydrolysis of acetylthiocholine and butyrylthiocholine has been observed in aqueous extracts from petunia pollen and pistils. The reproductive organs of self-compatible clone showed a higher rate of choline ester hydrolysis than those of self-incompatible clone. The highest rate of acetylthiocholine hydrolysis blocked by the cholinesterase inhibitors (physostigmine and neostigmine) was characteristic for the pollen of self-compatible clone. The incomplete (25 - 40 %) inhibition of hydrolysis in pistil extracts of self-compatible clone suggests the presence of unspecific esterases. The eight-fold lower hydrolysis was observed in the pistils of self-incompatible clone as compared to the pistils of compatible clone; neostigmine completely blocked this low hydrolytic activity. The treatment of flower buds with physostigmine and neostigmine (10-5 - 10-3 M) decreased the seed production by 10 - 20 % in compatible clone. When the surfaces of pistil stigmae were treated with physostigmine and neostigmine (10-5 - 10-3 M) before pollination, the seed formation was inhibited by 95 % after both self- and cross-pollination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Ghanem E  Li Y  Xu C  Raushel FM 《Biochemistry》2007,46(31):9032-9040
Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a nonspecific diesterase that enables Escherichia coli to utilize alkyl phosphodiesters, such as diethyl phosphate, as the sole phosphorus source. The catalytic properties of GpdQ were determined, and the best substrate found was bis(p-nitrophenyl) phosphate with a kcat/Km value of 6.7 x 10(3) M-1 s-1. In addition, the E. aerogenes diesterase was tested as a catalyst for the hydrolysis of a series of phosphonate monoesters which are the hydrolysis products of the highly toxic organophosphonate nerve agents sarin, soman, GF, VX, and rVX. Among the phosphonate monoesters tested, the hydrolysis product of rVX, isobutyl methyl phosphonate, was the best substrate with a kcat/Km value of 33 M-1 s-1. The ability of GpdQ to hydrolyze the phosphonate monoesters provides an alternative selection strategy in the search of enhanced variants of the bacterial phosphotriesterase (PTE) for the hydrolysis of organophosphonate nerve agents. This investigation demonstrated that the previously reported activity of GpdQ toward the hydrolysis of methyl demeton-S is due to the presence of a diester contaminant in the commercial material. Furthermore, it was shown that GpdQ is capable of hydrolyzing a close analogue of EA 2192, the most toxic and persistent degradation product of the nerve agent VX.  相似文献   

14.
Utilization of D-asparagine by Saccharomyces cerevisiae.   总被引:6,自引:6,他引:0       下载免费PDF全文
Yeast strains sigma1278b and Harden and Young, which synthesize only an internal constitutive form of L-asparaginase, do not grow on D-asparagine, as a sole source of nitrogen, and whole cell suspensions of these strains do not hydrolyze D-asparagine. Strains X2180-A2 and D273-10B, which possess an externally active form of asparaginase, are able to grow slowly on D-asparagine, and nitrogen-starved suspensions of these strains exhibit high activity toward the D-isomer. Nitrogen starvation of strain X218O-A2 results in coordinate increase of D- and L-asparaginase activity; the specific activity observed for the D-isomer is approximately 20% greater than that observed for the L-isomer. It was observed, in studies with cell extracts, that hydrolysis of D-asparagine occurred only with extracts from nitrogen-starved cells of strains that synthesize the external form of asparaginase. Furthermore, the activity of the extracts toward the D-isomer was always higher than that observed with the L-isomer. A 400-fold purified preparation of external asparaginase from Saccharomyces cerevisiae X218U-A2 hydrolyzed D-asparagine with an apparent Km of 0.23 mM and a Vmax of 38.7 mumol/min per mg of protein. D-Asparagine was a competitive inhibitor of L-asparagine hydrolysis and the Ki determined for this inhibition was approximately equal to its Km. These data suggest that D-asparagine is a good substrate for the external yeast asparaginase but is a poor substrate for the internal enzyme.  相似文献   

15.
Alpha-amylase was produced from Penicillium griseofulvum by an SSF technique. Alpha-amylase was immobilized on Celite by an adsorption method. Various parameters, such as effect of pH and temperature, substrate concentration, operational and storage stability, ability to hydrolyze starch and products of hydrolysis were investigated; these findings were compared with the free enzyme. The activity yield of immobilization was 87.6%. The optimum pH and temperature for both enzymes were 5.5 degrees C and 40 degrees C, respectively. The thermal, and the operational and storage stabilities of immobilized enzyme were better than that of the free enzyme. Km and Vmax were calculated from Lineweaver-Burk plots for both enzymes. Km values were 9.1 mg mL(-1) for free enzyme, and 7.1 mg mL(-1) for immobilized enzyme. The Vmax of the immobilized enzyme was approximately 40% smaller than that of the free enzyme. The hydrolysis ability of the free and immobilized enzyme were determined as 99.3% and 97.9%, respectively. Hydrolysis products of the a-amylase from P. griseofulvum were maltose, unidentified oligosaccharides, and glucose.  相似文献   

16.
An N-carbamoyl-L-amino acid amidohydrolase (L-N-carbamoylase) from Sinorhizobium meliloti CECT 4114 was cloned and expressed in Escherichia coli. The recombinant enzyme catalyzed the hydrolysis of N-carbamoyl alpha-amino acid to the corresponding free amino acid, and its purification has shown it to be strictly L-specific. The enzyme showed broad substrate specificity, and it is the first L-N-carbamoylase that hydrolyses N-carbamoyl-L-tryptophan as well as N-carbamoyl L-amino acids with aliphatic substituents. The apparent Km values for N-carbamoyl-L-methionine and tryptophan were very similar (0.65 +/- 0.09 and 0.69 +/- 0.08 mM, respectively), although the rate constant was clearly higher for the L-methionine precursor (14.46 +/- 0.30 s(-1)) than the L-tryptophan one (0.15 +/- 0.01 s(-1)). The enzyme also hydrolyzed N-formyl-L-methionine (kcat/Km = 7.10 +/- 2.52 s(-1) x mM(-1)) and N-acetyl-L-methionine (kcat/Km = 12.16 +/- 1.93 s(-1) x mM(-1)), but the rate of hydrolysis was lower than for N-carbamoyl-L-methionine (kcat/Km = 21.09 +/- 2.85). This is the first L-N-carbamoylase involved in the 'hydantoinase process' that has hydrolyzed N-carbamoyl-L-cysteine, though less efficiently than N-carbamoyl-L-methionine. The enzyme did not hydrolyze ureidosuccinic acid or 3-ureidopropionic acid. The native form of the enzyme was a homodimer with a molecular mass of 90 kDa. The optimum conditions for the enzyme were 60 degrees C and pH 8.0. Enzyme activity required the presence of divalent metal ions such as Ni2+, Mn2+, Co2+ and Fe2+, and five amino acids putatively involved in the metal binding were found in the amino acid sequence.  相似文献   

17.
The insect juvenile hormone specific esterases (JHEs), related to acetylcholinesterases but exhibiting substrate specificity for juvenile hormone (JH), are essential enzymes for normal insect development, making them attractive targets for biorationally designed, environmentally safe pesticides. We examine here a new enzyme, JHER, related to, but yet structurally, biochemically, and kinetically distinct from, the classical JHE. Both classical JHE and baculovirus-expressed JHER hydrolyze JH show disproportionately higher catalytic rates at higher substrate concentrations (in contrast to substrate inhibition reported for acetylcholinesterase) and are similarly inhibited by an organophosphate. However, JHER, which possesses an unusual cysteine residue at +1 to the catalytic serine, is less sensitive to trifluoromethyl ketone transition state analogs designed around the structure of JH. We propose a model in which JHER is expressed just prior to metamorphosis for hydrolysis of a JH-like substrate with hydrophobic backbone, a proximal ester, and a terminal expoxide or related substitution.  相似文献   

18.
A continuous-rate assay for the detection of esterases which hydrolyze synthetic pyrethroids is described. The assay is based on the release of p-nitrophenolate ion upon hydrolysis of the pyrethroid-like compound, trans- or cis-p-nitrophenyl-(1R,S)-3-(2,2-dichlorovinyl)-2, 2-dimethylcyclopropanecarboxylate, at pH 7.4 where spontaneous hydrolysis is not detected. The reagent is solubilized by 0.02% Triton X-100 in the presence of 1.0% ethanol. A simple procedure for the synthesis and separation of the isomers is described. The application of the reagent to the assay of esterases which detoxify synthetic pyrethroids in the cattle tick Boophilus microplus is reported.  相似文献   

19.
Kinetic parameters of hydrolysis of peptide and protein substrates by psychrophilic endopeptidases from hepatopancreas of the king crab Paralithodes camtschaticus (PC), in particular, by trypsin, collagenolytic protease, and metalloprotease, were measured at different temperatures. The PC trypsin was shown to hydrolyze Bz-Arg-pNA in the temperature range studied (4-37 degrees C) 19 times more effectively than bovine trypsin. The rate constants of hydrolysis of Glp-Ala-Ala-Leu-pNA by the PC collagenolytic protease increased approximately by one order of magnitude along with temperature decrease, while Km decreased by 3.5 times. The effective values of Km for the hydrolysis of azocasein by the metalloprotease insignificantly depend on temperature. We proposed that electrostatic interactions of negative charges around the cavity of active site are critical for the effective hydrolysis of substrates by endopeptidases of the PC hepatopancreas.  相似文献   

20.
We present evidence that cysteine 269 of the small subunit of Escherichia coli carbamyl phosphate synthetase is essential for the hydrolysis of glutamine. When cysteine 269 is replaced with glycine or with serine by site-directed mutagenesis of the carA gene, the resulting enzymes are unable to catalyze carbamyl phosphate synthesis with glutamine as nitrogen donor. Even though the glycine 269, and particularly the serine 269 enzyme bind significant amounts of glutamine, neither glycine 269 nor serine 269 can hydrolyze glutamine. The mutations at cysteine 269 do not affect carbamyl phosphate synthesis with NH3 as substrate. The NH3-dependent activity of the mutant enzymes was equal to that of wild-type. Measurements of Km indicate that the enzyme uses unionized NH3 rather than ammonium ion as substrate. The apparent Km for NH3 of the wild-type enzyme is calculated to be about 5 mM, independent of pH. The substitution of cysteine 269 with glycine or with serine results in a decrease of the apparent Km value for NH3 from 5 mM with the wild-type to 3.9 mM with the glycine, and 2.9 mM with the serine enzyme. Neither the glycine nor the serine mutation at position 269 affects the ability of the enzyme to catalyze ATP synthesis from ADP and carbamyl phosphate. Allosteric properties of the large subunit are also unaffected. However, substitution of cysteine 269 with glycine or with serine causes an 8- and 18-fold stimulation of HCO-3 -dependent ATPase activity, respectively. The increase in ATPase activity and the decrease in apparent Km for NH3 provide additional evidence for an interaction of the glutamine binding domain of the small subunit with one of the two known ATP sites of the large subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号