首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiophosphatidylcholines, i. e. phosphatidylcholine analogues in which one of phosphate oxygens is replaced by a sulfur atom, have been synthesized. The properties of aqueous dispersions of thiophosphatidylcholine and its equimolar mixture with diphosphatidylglycerol (cardiolipin) have been studied by 31P NMR. The 31P resonance of thiophospholipids dissolved in deuterochloroform was found to be shifted 19 ppm downfield from the signals of natural phospholipids. This feature allowed a complete separation of signals of thiophospholipids and natural phospholipids in the 31P NMR spectra of model membranes by using "DANTE" pulse sequence. The possibility of employing thiophospholipids in 31P NMR studies of lipid polymorphism in model membranes was demonstrated.  相似文献   

2.
The clinical use of efficient therapeutic agents is often limited by the poor permeability of the biological membranes. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. CPPs are based either on protein transduction domains, model peptide or chimeric constructs and have been used to deliver cargoes into cells through either covalent or non-covalent strategies. Although several parameters are simultaneously involved in their internalization mechanism, recent focuses on CPPs suggested that structural properties and interactions with membrane phospholipids could play a major role in the cellular uptake mechanism. In the present work, we report a comparative analysis of the structural plasticity of 10 well-known CPPs as well as their ability to interact with phospholipid membranes. We propose a new classification of CPPs based on their structural properties, affinity for phospholipids and internalization pathways already reported in the literature.  相似文献   

3.
Spin-labeled analogs of phospholipids have been used widely to characterize the biophysical properties of membranes. We describe synthesis and application of a new spin-labeled phospholipid analog, SL-POPC. The advantage of this molecule is that the EPR active doxyl group is linked to an unsaturated fatty acyl chain different to saturated phospholipid analogs used so far. The need for those analogs arises from the fact that biological membranes contain unsaturated phospholipids to a large extent. The biophysical properties of SL-POPC in membranes were characterized using EPR and NMR spectroscopy and compared with those of the saturated spin-labeled phospholipid, SL-PSPC. To this end, POPC membranes were labeled with either analog to assess whether the spin-labeled counterpart SL-POPC mimics the membrane properties better than the often used SL-PSPC. The results show that SL-POPC and SL-PSPC explore different molecular environments of the bilayer, and that the type and degree of perturbation of bilayer caused by the label moiety also differs between both analogs. We found that SL-POPC is more appropriate to assess the versatile dynamics of POPC membranes than SL-PSPC.  相似文献   

4.
Multilayer planar membranes applicable to ion-transport measurements were constructed from egg yolk lecithin, egg yolk lecithin-cholesterol mixture, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine between two tightly stretched cellulose sheets. While most of the phospholipids in the membranes were found by a spin label technique to be uniformly oriented with their long hydrocarbon chains perpendicular to the surfaces of the cellulose sheets, a small fraction of phospholipids were isotropically oriented in multilayer membranes. The amount of phospholipids with isotropic orientations decreased with increasing content of cholesterol in membranes and became zero in membranes of egg yolk lecithin-cholesterol mixture (molar ratio of 1: 0.67). The degree of orientation, S, of uniformly oriented phospholipids in membranes was also increased by adding cholesterol to the membranes. The orientation of phospholipids in membranes was rather stable in distilled water and in aqueous calcium chloride (1, 10, 100 mM), while a marked disordering of oriented phospholipids was induced in a aqueous solutions containing thymol, isopropanol, or butanol beyond certain specific concentrations. The membranes can be used for measurements of calcium permeation. An appreciable barrier function to calcium permeation was detected with these multilayer planar membranes as compared with control experiments using only cellulose sheets as membranes. A preliminary investigation suggested that changes in the orientational structure of phospholipids in the multilayer planar membranes are correlated with permeability properties of the membranes.  相似文献   

5.
H. W. Lea 《Planta》1976,129(1):39-41
Summary A muscle contracting substance (MCS) occurs in crushed, incubated traps of the insectivorous plant, the Venus Fly-Trap (Dionaea muscipula Ellis). This MCS is provisionally identified as lysophosphatidic acid. More MCS is produced from traps which have been touched than from untouched traps, which may be due to activation of phospholipase D. This enzyme hydrolyses phospholipids of membranes, and could alter the physiological properties of membranes.Abbreviations MCS muscle contracting substance - ACh acetylcholine  相似文献   

6.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

7.
The family of protein kinase C (PKC) isozymes belongs to a growing class of proteins that become active by associating with membranes containing anionic phospholipids, such as phosphatidylserine. Depending on the particular PKC isoform, this process is mediated by Ca(2+)-binding to a C2 domain and interaction of activators such as 1,2-diacyl-sn-glycerol or phorbol esters with tandem C1 domains. This cooperation between the C1 and C2 domains in inducing the association of PKC with lipid membranes provides the energy for a conformational change that consists of the release of a pseudosubstrate sequence from the active site, culminating in activation. Thus, the properties of the interactions of the C1 and C2 domains with membranes, both as isolated domains, and as modules in the full length PKC isoforms, have been the subject of intense scrutiny. Here, we review the findings of studies in which fluorescent phorbol esters have been utilized to probe the properties of the C1 domains of PKC with respect to the interaction with activators, the subsequent interaction with membranes, and the role of the activating conformational change that leads to activation.  相似文献   

8.
Formation of microlenses, a reduction in thickness, and a change in mechanical properties have been observed when Ca2+ or other multivalent ions are added to bathing solutions of Mueller-Rudin membranes of acidic phospholipids. The observations are interpreted as an extrusion of residual solvent from the hydrocarbon core of the bilayer due to changes in packing imposed by the reduction of electrostatic repulsion of the head groups.  相似文献   

9.
Two acidic Ca2(+)-binding proteins (CaBP33 and CaBP37) purified from bovine brain have been characterized in terms of immunological properties, heat-sensitivity, electrophoretic mobility, and Ca2(+)-dependent binding to negatively charged phospholipids and to brain membranes. They were induced to bind to membranes by homogenization of brain tissue in the presence of CaCl2. The membrane-bound CaBP33/CaBP37 mixture resisted extraction with detergents and was solubilized with high concentrations of EGTA/KCl. However, apparent Ca2(+)-independent binding of the two proteins to membranes seemed to occur as well. This latter fraction of membrane-bound CaBP33 and CaBP37 could be solubilized with Triton X-100, indicating that brain membranes normally contain the two proteins as intrinsic components.  相似文献   

10.

Background

Liposomes are currently an important part of biological, pharmaceutical, medical and nutritional research, as they are considered to be among the most effective carriers for the introduction of various types of bioactive agents into target cells.

Scope of Review

In this work, we study the lipid organization and mechanical properties of biomembranes made of marine and plant phospholipids. Membranes based on phospholipids extracted from rapeseed and salmon are studied in the form of liposome and as supported lipid bilayer. Dioleylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) are used as references to determine the lipid organization of marine and plant phospholipid based membranes. Atomic force microscopy (AFM) imaging and force spectroscopy measurements are performed to investigate the membranes'' topography at the micrometer scale and to determine their mechanical properties.

Major Conclusions

The mechanical properties of the membranes are correlated to the fatty acid composition, the morphology, the electrophoretic mobility and the membrane fluidity. Thus, soft and homogeneous mechanical properties are evidenced for salmon phospholipids membrane containing various polyunsaturated fatty acids. Besides, phase segregation in rapeseed membrane and more important mechanical properties were emphasized for this type of membranes by contrast to the marine phospholipids based membranes.

General Significance

This paper provides new information on the nanomechanical and morphological properties of membrane in form of liposome by AFM. The originality of this work is to characterize the physico-chemical properties of the nanoliposome from the natural sources containing various fatty acids and polar head.  相似文献   

11.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

12.
The problem whether the membrane sterols are indirect acceptors of polyenic antibiotics or they play the role of substances providing conditions (at the expense of putting in order the membrane phospholipids) for formation of conductive complexes (ionic canals) from the antibiotic molecules is discussed. The comparative study on the ability of sterols of various structure (ergosterol, 7-dehydrocholesterol, cholesterol, 5 alpha-cholestan-3 beta-ol) to interact with the membrane phospholipids and to increase the sensitivity of such membranes to amphotericin B showed no correlation between the levels of these properties. The value of the changes in the cross elasticity module (E) of artificial bilayer lipid membranes from egg lecithin on introduction of the above sterols into their composition was used as the criterion for the interaction level. The absence of correlation between the above properties of the sterols indicated that the role of the sterols in interaction of polyenic antibiotics with the membranes could not be considered as the only effect of the sterols on putting in order the phospholipids, which confirmed the hypothesis on the acceptor function of the sterols with respect to polyenic antibiotics. The study of the effect of amphotericin B on the elastic properties of the cholesterol-containing bilayer membranes isolated from egg lecithin showed tha the values of the longitudinal and cross elasticity modules of the membranes did not change during introduction into the membranes of the ionic canals.  相似文献   

13.
The binding and phospholipase A2 activity of an 11,000-dalton beta-bungarotoxin, isolated from Bungarus multicincutus venom, have been characterized using rat brain subcellular fractions as substrates. 125I-labeled beta-bungarotoxin binds rapidly (k = 0.14 min-1 and 0.11 min-1), saturably (Vmax = 130.1 +/- 5.0 fmoles/mg and 128.2 +/- 7.1) fmoles/mg), and with high affinity (apparent Kd = 0.8 +/- 0.1 nM and 0.7 +/- 0.1 nM) to rat brain mitochondria and synaptosomal membranes, respectively, but not to myelin. The binding to synaptosomal membranes is inhibited by divalent cations and by pretreatment with trypsin. The binding results suggest that the toxin binds to specific protein receptor sites on presynpatic membranes. The 11,000-dalton toxin rapidly hydrolyzes synaptosomal membrane phospholipids to lysophosphatides and manifests relative substrate specificity in the order phosphatidyl ethanolamine greater than phosphatidyl choline greater than phosphatidyl serine. These results indicate that the 11,000-dalton beta-bungarotoxin is a phospholipase A2 and can use presynaptic membrane phospholipids as substrates. The binding, phospholipase activity and other biological properties of the 11,000-dalton toxin are contrasted with those of the beta-bungarotoxin found in highest concentration in the venom (the 22,000-dalton beta-bungarotoxin), and the two toxins are shown to have qualitatively similar properties. Finally the results are shown to support the hypothesis that beta-bungarotoxins act in a two-step fashion to inhibit transmitter release: first, by binding to a protein receptor site on the presynatic membrane associated with Ca2+ entry, and second, by perturbing through enzymatic hydrolyses the phospholipid matrix of the membrane and thereby causing an increase in passive Ca2+ permeability.  相似文献   

14.
alpha-Parinaric acid has been used to determine the degree of ordering of the hydrocarbon region of purified intracytoplasmic membranes of Rhodopseudomonas sphaeroides. The usefulness of alpha-parinaric acid as a probe of membrane fluidity was established by comparison of its fluorescent properties in phosphatidylcholine vesicles with those of the more commonly used fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene. Both fluorescent probes were shown to monitor similar environments in the phosphatidylcholine vesicles when the phospholipids were maintained at temperatures above their phase transition temperature. The rotational mobility of alpha-parinaric acid in the intracytoplasmic membranes was determined from 0 to 50 degrees C, a region where no phase transitions were detectable. The rotational mobility of alpha-parinaric acid dissolved in vesicles formed from total extracted intracytoplasmic membrane phospholipids, was 2--3-fold greater than that measured in the intact intracytoplasmic membranes; demonstrating that the presence of protein greatly reduces the mobility of the phospholipid acyl chains of the intracytoplasmic membranes. Due to the high protein content of these membranes, the perturbing effect of protein on acyl chain mobility may extend to virtually all the intracytoplasmic membrane phospholipid.  相似文献   

15.
A phospholipid transfer protein from yeast (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 794, 385-391) was 2800-fold enriched by an improved procedure. The specificity of this transfer protein and the influence of membrane properties of acceptor vesicles (lipid composition, charge, fluidity) on the transfer activity were determined in vitro using pyrene-labeled phospholipids. The yeast transfer protein forms a complex with phosphatidylinositol or phosphatidylcholine, respectively, and transfers these two phospholipids between biological and/or artificial membranes. The transfer rate for phosphatidylinositol is 19-fold higher than for phosphatidylcholine as determined with 1:8 mixtures of phosphatidylinositol and phosphatidylcholine in donor and acceptor membrane vesicles. If acceptor membranes consist only of non-transferable phospholipids, e.g., phosphatidylethanolamine, a moderate but significant net transfer of phosphatidylcholine occurs. Phosphatidylcholine transfer is inhibited to a variable extent by negatively charged phospholipids and by fatty acids. Differences in the accessibility of the charged groups of lipids to the transfer protein might account for the different inhibitory effects, which occur in the order phosphatidylserine which is greater than phosphatidylglycerol which is greater than phosphatidylinositol which is greater than cardiolipin which is greater than phosphatidic acid which is greater than fatty acids. Although mitochondrial membranes contain high amounts of negatively charged phospholipids, they serve effectively as acceptor membranes, whereas transfer to vesicles prepared from total mitochondrial lipids is essentially zero. Ergosterol reduces the transfer rate, probably by decreasing membrane fluidity. This notion is supported by data obtained with dipalmitoyl phosphatidylcholine as acceptor vesicle component; in this case the transfer rate is significantly reduced below the phase transition temperature of the phospholipid.  相似文献   

16.
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions.  相似文献   

17.
Host defense peptides are widely distributed in nature, being found in species from bacteria to humans. The structures of these peptides from insects, horseshoe crabs, frogs, and mammals are known to have the common features of a net cationic charge due to the presence of multiple Arg and Lys residues and in most cases the ability to form amphipathic structures. These properties are important for the mechanism of action that is thougln to be a nonreceptor-mediated interaction with the anionic phospholipids of the target cell followed by incorporation into the membrane and disruption of the membrane structure. Host defense peptides have been shown to have broad spectrum antimicrobial activity, able to kill most strains of bacteria as well as some fungi, protozoa, and in addition, many types of tumor cells. Specificity for pathogenic cells over host cells is thought to be due to the composition of the cell membranes, with an increased proportion of anionic phospholipids making the pathogen more susceptible and the presence of cholesterol making the host membranes more resistant. Structure–activity relationship studies have been performed on insect cecropins and apidaecins. horseshoe crab tachyplesins and polyphemusins. and the frog magainins. CPFs (caerulein precursor fragments) and PGLa. In general, changes that increased the basicity and stabilized the amphipathic structure have increased the antimicrobial activity: however, as the peptides become more hydrophobic the degree of specificity decreases. One magainin-2 analogue. MSI-78. has been developed by Magainin Pharmaceuticals as a topical antiinefective and is presently in clinical trials for the treatment of infected diabetic foot ulcers. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Lipid-transfer proteins: Tools for manipulating membrane lipids   总被引:1,自引:0,他引:1  
Like other eukaryotic cells, plant cells contain proteins able to bind or to transfer lipids. Since they are able to facilitate movements of various phospholipids between membranes and are also capable of binding fatty acids or acyl-CoAs, they have been termed lipid-transfer proteins (LTP). LTPs are basic proteins containing 90 to 95 residues (molecular mass 9 kDa), eight of them being cysteines found in conserved locations. These proteins have been used to manipulate in vitro the lipid composition of isolated membranes either from plant or mammalian sources. In addition to purified LTPs, recombinant LTPs produced by genes expressed in microorganisms can be used for this purpose. Several genes coding for these proteins have been characterized in various plants with different patterns of expression. However, it remains to be investigated whether these recombinant proteins behave functionally as LTPs. The use of purified or recombinant LTPs is promising for the study of the effect of lipid composition on membrane functional properties.  相似文献   

19.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

20.
The short circuit current and the open circuit voltage responses of membranes to ATP, which have been attributed to membrane ATPase acting as a sodium pump, have been reproduced not only in a lipid membrane containing solubilized ATPase but also in membranes formed of the phospholipids contained in ATPase. The response is greatest with cardiolipin, but occurs with other acidic phospholipids. This observation of electrogenesis without hydrolysis is a surface phenomenon probably due to the alignment of ATP on the phospholipid by ion association at its interface with the water phase. The finding constitutes a precaution for interpreting studies of membrane Na-K-ATPase or for its incorporation into an artificial membrane. The substances necessary for electrogenesis are present at the mitochondrial membrane, and the particular orientation of the ATP on the phospholipids in vitro suggests a role for this ion association in the function of Na-K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号