首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many decades effective insect repellents have relied on synthetic actives such as N,N -diethyl- meta -toluamide. Increasingly, consumers are seeking natural-based alternatives to many everyday products including insect repellents. While many studies have been published detailing the potential of essential oils to act as insect repellents, few oils have been identified as viable alternatives to synthetic actives. This study details the process involved in the selection of Australian essential oils effective as repellents and the subsequent testing of natural-based insect repellents using the selected oils. Using a combination of laboratory-based and field-based testing, oil from Melaleuca ericifolia was identified as being an effective insect repellent. When formulated into three different bases: an alcohol-based spray, an emulsion and a gel, these Melaleuca -based repellents were shown to be as effective at repelling mosquitoes Aedes vigilax (Skuse) (Diptera: Culicidae) and Verrallina carmenti (Edwards) (Diptera: Culicidae), the bush fly Musca vetustissima (Walker) (Diptera: Muscidae), and biting midges Culicoides ornatus (Taylor) (Diptera: Ceratopogonidae) and Culicoides immaculatus (Lee & Reye) (Diptera: Ceratopogonidae) as a synthetic-based commercial repellent. This study has shown that effective insect repellents based on natural active ingredients can deliver repellency on par with synthetic actives in the field. Three Melaleuca -based formulations have been registered as repellents and are now commercially available.  相似文献   

2.
The lone star tick, Amblyomma americanum, is a vector of several important human and animal diseases. This tick species has rapidly expanded in its geographic distribution, and its aggressive behavior has increased the risk of tick-borne diseases in these new areas. Repellents are recommended by the Centers for Disease Control and Prevention (CDC) for protection against tick bites. DEET is the most common repellent, but public concerns over its safety have increased the need for alternative safe and efficacious tick repellents. Several naturally derived animal compounds have been tested against other species of ticks or other arthropod pests, but not against A. americanum. Based on EC50 values obtained using a vertical paper bioassay, decylamine and MT-710 (a 2-tridecanone formulation) were found to be as repellent as DEET. Those two substances along with 2-tridecanone were also found to be as repellent as DEET when their EC95 values were compared. Lone star ticks were more susceptible to the toxic effects of DEET in glass vial assays than all of the ant-derived defensive compounds/formulations. These results suggest that the ant-derived defensive compounds are likely more effective lone star tick repellents than DEET, but they are not as toxic as DEET towards the ticks. The suitability of these compounds for use as personal repellents, as well as at the landscape scale, should be explored.  相似文献   

3.
The IR3535 derivative (LJH158), in which the ethyl ester of IR3535 was converted to methyl ester, was synthesized and studied as a new mosquito repellent. The repellent efficacy of LJH158 was compared with that of DEET against Aedes albopictus, Culex pipiens pallens and Aedes togoi. Also, the aromatic repellent tests were conducted with mixtures of repellents and the essential oils of cinnamon, which were obtained by supercritical fluid extraction. In addition, the safety issues of LJH158 were monitored using single oral dose safety methods and eye irritation, and skin irritation tests. The results of repellent efficacy in both biting and aromatic tests and safety tests demonstrate that LJH158 has high potential to be used as a new repellent or in combination with other repellents.  相似文献   

4.
A long-standing question in bacterial chemotaxis is whether repellents are sensed by receptors or whether they change a general membrane property such as the membrane fluidity and this change, in turn, is sensed by the chemotaxis system. This study addressed this question. The effects of common repellents on the membrane fluidity of Escherichia coli were measured by the fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene in liposomes made of lipids extracted from the bacteria and in membrane vesicles. Glycerol, indole, and L-leucine had no significant effect on the membrane fluidity. NiSO4 decreased the membrane fluidity but only at concentrations much higher than those which elicit a repellent response in intact bacteria. This indicated that these repellents are not sensed by modulating the membrane fluidity. Aliphatic alcohols, on the other hand, fluidized the membrane, but the concentrations that elicited a repellent response were not equally effective in fluidizing the membrane. The response of intact bacteria to alcohols was monitored in various chemotaxis mutants and found to be missing in mutants lacking all the four methyl-accepting chemotaxis proteins (MCPs) or the cytoplasmic che gene products. The presence of any single MCP was sufficient for the expression of a repellent response. It is concluded (i) that the repellent response to aliphatic alcohols can be mediated by any MCP and (ii) that although an increase in membrane fluidity may take part in a repellent response, it is not the only mechanism by which aliphatic alcohols, or at least some of them, are effective as repellents. To determine whether any of the E. coli repellents are sensed by periplasmic receptors, the effects of repellents from various classes on periplasm-void cells were examined. The responses to all the repellents tested (sodium benzoate, indole, L-leucine, and NiSO4) were retained in these cells. In a control experiment, the response of the attractant maltose, whose receptor is periplasmic, was lost. This indicates that these repellents are not sensed by periplasmic receptors. In view of this finding and the involvement of the MCPs in repellent sensing, it is proposed that the MCPs themselves are low-affinity receptors for the repellents.  相似文献   

5.

Background

Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests.

Methodology

Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have “generic repellent detector(s),” which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the “empty neuron” and showed to be sensitive to the three insect repellents.

Conclusions

For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have also identified the insect repellent-sensitive receptor, DmOr42a. This generic detector fulfils the requirements for a simplified bioassay for early screening of test insect repellents.  相似文献   

6.
A bioassay was developed to examine the response of ticks towards potential repellents that may protect vertebrates against tick bites. Such tick repellents must be effective despite the unavoidable presence of various attractive host-derived stimuli. Therefore, a moving-object-bioassay (MO-bioassay) was developed that mimicks body warmth and movement of vertebrates by a rotating and heated drum. Compounds which were tested for their effects on ticks were applied onto a small elevated area of the drum. Ticks were allowed to approach the drum by walking on a glass rod which ended 1 mm away from the local elevation. Ticks could cling to this elevation that intermittently passed by, whereas the remaining drum surface was too far away from the tip of the rod to be contacted by the ticks.Without the presence of any repellents, 85.5% of 600 hungry, field-collected Ixodes ricinus nymphs moved to the heated, rotating drum within 2 min. Further experiments with unfed I. ricinus nymphs were performed to test whether one established and two potential tick repellents elicit an avoidance reaction in the ticks despite the proven attractiveness of the drum. Freshly applied DEET (N,N-diethyl-m-toluamide) at a concentration of 0.11 mg cm–2 proved active as a repellent in the MO-bioassay over a distance of a few mm as well as by direct contact. A similar repellent effect was observed with (–)-myrtenal at 1 mg cm–2, but not at 0.1 mg cm–2, indicating that this terpenaldehyde is a weaker repellent for I. ricinus nymphs than DEET. No repellent effect was observed with camphor (0.1 mg cm–2).The MO-bioassay thus is a rapid, simple and low-cost test method allowing the investigation of tick host-contact behaviour as well as the screening of candidate repellents which are either perceived as volatiles or via contact chemoreception.  相似文献   

7.
The development of Shark Chaser by the U.S. Navy during World War II was the first serious effort to develop a chemical shark repellent. In the decade following the war reports of Shark Chaser ineffectiveness led the Office of Naval Research to search for a more efficacious shark repellent. After years without success, ONR eventually canceled the use of Shark Chaser and abandoned the search for a chemical shark repellent. In the early 1970s, interest in chemical shark repellents was renewed by the discovery of pardaxin, a natural shark repellent secreted by the Red Sea Moses sole, Pardachirus marmoratus. The surfactant-like nature of pardaxin led investigators to test the potential of various surfactants as repellents. Subsequent studies indicated that the shark repellent efficacy of the effective alkyl sulfate surfactants was due to their hydrophobic nature. Here we report tests conducted on juvenile swell sharks, Cephaloscyllium ventriosum, to determine if the noxious quality of alkyl sulfates is affected by surfactant hydrophobicity [carbon chain length and ethylene oxide (EO) groups] and counterions. Our results indicate that the aversive response of sharks to alkyl sulfate surfactants increases with carbon chain length from octyl to dodecyl, decreases with the addition of EO groups and is not affected by counterions. This study confirms that dodecyl sulfate is the most effective surfactant shark repellent, but it does not meet the Navy's potency requirement for a nondirectional surrounding-cloud type repellent of 100 parts per billion (0.1ugml–1). Thus, dodecyl sulfate is only practical as a directional repellent such as in a squirt application. Future research should test the action of alkyl sulfates on cell membranes, the potential of other biotoxic agents, and semiochemicals in the search for an effective chemical shark repellent.  相似文献   

8.
Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is a vector for Plasmodium, the causative agent of malaria. Current control strategies to reduce the impact of malaria focus on reducing the frequency of mosquito attacks on humans, thereby decreasing Plasmodium transmission. A need for new repellents effective against Anopheles mosquitoes has arisen because of changes in vector behaviour as a result of control strategies and concern over the health impacts of current repellents. The response of A. gambiae to potential repellents was investigated through an electroantennogram screen and the most promising of these candidates (1‐allyloxy‐4‐propoxybenzene, 3c {3,6}) chosen for behavioural testing. An assay to evaluate the blood‐host seeking behaviour of A. gambiae towards a simulated host protected with this repellent was then performed. The compound 3c {3,6} was shown to be an effective repellent, causing mosquitoes to reduce their contact with a simulated blood‐host and probe less at the host odour. Thus, 3c {3,6} may be an effective repellent for the control of A. gambiae.  相似文献   

9.
Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand-based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant-binding protein 1 Ae. aegypti. Ligand-based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best-classified compounds compared to the others and they can be explored to develop new repellents.  相似文献   

10.
【目的】为了探究驱避机理,此前选择萜类驱避化合物及与DEET(避蚊胺)具有类似结构的酰胺类驱避化合物,开展了驱避化合物与引诱气味组分(L-乳酸、羧酸等)缔合作用对驱避活性影响的研究。为了扩大驱避化合物的类型,本研究选择另外一组43个酰胺类驱避化合物,计算了它们与蚊虫引诱物氨之间的双分子缔合作用,以及该缔合作用对驱避活性的影响,从而为驱避机理研究提供帮助。【方法】用Gaussian 03软件优化驱避化合物单体和双分子缔合体的三维结构式;通过Ampac和Codessa软件建立结构与驱避活性之间的定量构效关系模型。【结果】驱避化合物与氨分子的缔合距离、角度和缔合能量分别是2.2~3.0,128~180°和14~25 k J/mol;最佳四参数模型中R2为0.8987,其中2个参数来自驱避化合物单体,分别是(1/6)X GAMMA polarizability(DIP)和ESPminimum net atomic charge for an H atom,另外2个参数来自双分子缔合体,分别是ESP-DPSA-2 difference in CPSAs(PPSA2-PNSA2)[Quantum-Chemical PC]和Minimum valency of a C atom。模型检验中训练集和测试集的相关系数平方的平均值分别为0.9013和0.8666。【结论】驱避化合物与氨分子之间存在弱氢键力缔合作用,驱避化合物分子的极化度及其与氨分子之间的极性相互作用、缔合体中分子间键相互作用及其电荷分布均对驱避活性产生显著影响,说明双分子缔合对驱避活性具有显著影响。模型检验表明最佳四参数模型具有良好的稳定性和预测能力。本研究可为寻找新型蚊虫驱避剂和揭示蚊虫驱避剂的作用机理提供参考。  相似文献   

11.
The search for novel insect repellents has been driven by health concerns over established synthetic compounds such as diethyl-m-toluamide (DEET). Given the diversity of compounds known from frog skin and records of mosquito bite and ectoparasite infestation, the presence of mosquito repellents in frogs seemed plausible. We investigated frog skin secretions to confirm the existence of mosquito repellent properties. Litoria caerulea secretions were assessed for mosquito repellency by topical application on mice. The secretions provided protection against host-seeking Culex annulirostris mosquitoes. Olfactometer tests using aqueous washes of skin secretions from L. caerulea and four other frog species were conducted to determine whether volatile components were responsible for repellency. Volatiles from Litoria rubella and Uperoleia mjobergi secretions were repellent to C. annulirostris, albeit not as repellent as a DEET control. The demonstration of endogenous insect repellents in amphibians is novel, and demonstrates that many aspects of frog chemical ecology remain unexplored.  相似文献   

12.
Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.  相似文献   

13.
Insect repellents are known since many decades ago and constitute a major tool for personal protection against the biting of mosquitoes. Despite their wide use, the understanding of why and how repellents repel is relatively recent. In particular, the question about to what extent insects other than mosquitoes are repulsed by repellents remains open. We developed a series of bioassays aimed to test the performance of well established as well as potential repellent molecules on the Chagas disease vector Rhodnius prolixus. Besides testing their ability to prevent biting, we tested the way in which they act, i.e., by obstructing the detection of attractive odours or by themselves. By using three different experimental protocols (host-biting, open-loop orientation to odours and heat-triggered proboscis extension response) we show that DEET repels bugs both in the presence and in the absence of host-associated odours but only at the highest quantities tested. Piperidine was effective with or without a host and icaridine only repelled in the absence of a living host. Three other molecules recently proposed as potential repellents due to their affinity to the Ir40a+ receptor (which is also activated by DEET) did not evoke significant repellency. Our work provides novel experimental tools and sheds light on the mechanism behind repellency in haematophagous bugs.  相似文献   

14.

Background

New vector control paradigms expanding the use of spatial repellents are promising, but there are many gaps in our knowledge about how repellents work and how their long-term use might affect vector populations over time. Reported here are findings from a series of in vitro studies that investigated the plasticity and heritability of spatial repellent (SR) behaviors in Aedes aegypti exposed to airborne transfluthrin, including results that indicate a possible link between repellent insensitivity and insecticide resistance.

Methodology/principal findings

A dual-choice chamber system was used to observe directional flight behaviors in Aedes aegypti mosquitoes exposed to passively emanating transfluthrin vapors (1.35 mg/m3). Individual SR responder and SR non-responder mosquitoes were identified, collected and maintained separately according to their observed phenotype. Subsequent testing included re-evaluation of behavioral responses in some mosquito cohorts as well as testing the progeny of selectively bred responder and non-responder mosquito strains through nine generations. At baseline (F0 generation), transfluthrin actively repelled mosquitoes in the assay system. F0 mosquitoes repelled upon initial exposure to transfluthrin vapors were no more likely to be repelled again by subsequent exposure 24h later, but repelled mosquitoes allowed to rest for 48h were subsequently repelled at a higher proportion than was observed at baseline. Selective breeding of SR responders for nine generations did not change the proportion of mosquitoes repelled in any generation. However, selective breeding of SR non-responders did produce, after four generations, a strain of mosquitoes that was insensitive to the SR activity of transfluthrin. Compared to the SR responder strain, the SR insensitive strain also demonstrated decreased susceptibility to transfluthrin toxicity in CDC bottle bioassays and a higher frequency of the V1016Ikdr mutation.

Conclusions/significance

SR responses to volatile transfluthrin are complex behaviors with multiple determinants in Ae. aegypti. Results indicate a role for neurotoxic irritation of mosquitoes by sub-lethal doses of airborne chemical as a mechanism by which transfluthrin can produce SR behaviors in mosquitoes. Accordingly, how prolonged exposure to sub-lethal doses of volatile pyrethroids might impact insecticide resistance in natural vector populations, and how already resistant populations might respond to a given repellent in the field, are important considerations that warrant further monitoring and study. Results also highlight the critical need to develop new repellent active ingredients with novel mechanisms of action.  相似文献   

15.
Repellents are highly effective in preventing humans from being bitten by mosquitoes and other blood‐feeding insects. Here we provide an overview of the representative in vitro bioassays for the laboratory testing of these agents. Currently, potential repellents are mostly evaluated on human skin, using the arm‐in‐cage method. However, for the testing of large numbers of chemicals for mosquito repellent activity, several in vitro bioassays have been established. Based on their components, as described in the recent literature, these can be categorized: (i) the natural tendency system; (ii) the membrane plus blood system; (iii) the skin plus attractants system; and (iv) the host plus netting system. The major advantages and disadvantages of these bioassays are discussed with the aim of establishing reliable and practical methods for discovering novel mosquito repellents.  相似文献   

16.
There is a broad understanding of the influence of environmental factors on various aspects of normal mosquito behavior. How these external factors influence responses to repellent compounds is far less clear. The objective of this study was to investigate the effect of different daytime periods combining the normal circadian activity of a laboratory colony of Aedes aegypti (L.) with behavioral responses of mosquitoes exposed to three different compounds possessing repellent properties. Using an excito-repellency test chamber with different test designs (contact irritancy + repellency and noncontact repellency), female mosquitoes were exposed to each chemical or matching blank control during four different 3-h time intervals beginning 0600 to 1800?h. Mosquitoes showed more significant avoidance responses (escape movement away from the chemical) when exposed to either DEET or hairy basil during the afternoon periods. With deltamethrin, there was no significant difference in repellent escape movement during any period of testing. Escape activity with deltamethrin was significantly greater during all diurnal periods in contact tests compared to DEET and hairy basil. From this study, it was shown that time of diurnal testing can significantly influence behavioral responses of Ae. aegypti exposed to chemical-based repellents. Therefore, the assessment of chemicals (toxins, repellents, attractants) and must carefully consider time-of-test as a potential confounding factor during evaluation and comparisons.  相似文献   

17.

Objectives

Repellents do not kill mosquitoes - they simply reduce human-vector contact. Thus it is possible that individuals who do not use repellents but dwell close to repellent users experience more bites than otherwise. The objective of this study was to measure if diversion occurs from households that use repellents to those that do not use repellents.

Methods

The study was performed in three Tanzanian villages using 15%-DEET and placebo lotions. All households were given LLINs. Three coverage scenarios were investigated: complete coverage (all households were given 15%-DEET), incomplete coverage (80% of households were given 15%-DEET and 20% placebo) and no coverage (all households were given placebo). A crossover study design was used and coverage scenarios were rotated weekly over a period of ten weeks. The placebo lotion was randomly allocated to households in the incomplete coverage scenario. The level of compliance was reported to be close to 100%. Mosquito densities were measured through aspiration of resting mosquitoes. Data were analysed using negative binomial regression models.

Findings

Repellent-users had consistently fewer mosquitoes in their dwellings. In villages where everybody had been given 15%-DEET, resting mosquito densities were fewer than half that of households in the no coverage scenario (Incidence Rate Ratio [IRR]=0.39 (95% confidence interval [CI]: 0.25-0.60); p<0.001). Placebo-users living in a village where 80% of the households used 15%-DEET were likely to have over four-times more mosquitoes (IRR=4.17; 95% CI: 3.08-5.65; p<0.001) resting in their dwellings in comparison to households in a village where nobody uses repellent.

Conclusions

There is evidence that high coverage of repellent use could significantly reduce man-vector contact but with incomplete coverage evidence suggests that mosquitoes are diverted from households that use repellent to those that do not. Therefore, if repellents are to be considered for vector control, strategies to maximise coverage are required.  相似文献   

18.
Repellents in the form of dermal pomades are recommended as a protection against awakening and bedtime mosquito bites. If synthesis repellents are available, they are nevertheless not common and the prices remain out of reach for the communities concerned. The people therefore have to resort more and more to traditional concoctions, some of which have been shown to be effective. After demonstrating that oil-based formulations (lotions, creams, pomades) of Cocos nucifera (coconut), Elaeis guineensis (oil palm) and Carapa procera (gobi) were effective against mosquitoes, it became necessary to study the impact of the two excipients used in their manufacture, on the effectiveness of the repellents. Experiments were carried with Anopheles gambiae and Aedes aegypti under lobaratory conditions and any other mosquitoes collected under field conditions in Ivory Coast. The laboratory results indicate that the average protection times obtained with formulations with karite nut butter as excipient (54.8 +/- 37.0 mn and 74.6 +/- 26.4 mn respectively on An. gambiae and Ae. aegypti) are higher than those recorded with vaseline as excipient (respectively 42.7 +/- 30.0 mn and 60.8 +/- 33.9 mn). On the other hand, under field conditions, the biting rate percentage reduction obtained with the products with karite nut butter and vaseline excipient were similar (respectively 29.8% and 35.9% for all mosquitoes collected and 45.7% and 47.4% against An. gambiae). Nevertheless, the use of karite nut butter on repellent products should be encouraged because its sale price is very lower (10 time less) than the vaseline's.  相似文献   

19.
We examined how molecular structure of 24 anthranilate and benzoic acid derivatives correlated with drinking behavior in European starlings Sturnus vulgaris. The effectiveness of bird repellents was associated with basicity, the presence of an electron-donating group in resonance with an electron-withdrawing carboxylic group on a phenyl ring, and a heterocyclic ring in the same pi cloud plane as the phenyl ring. Of the benzoic acid derivatives tested in this study, methyl, ethyl, dimethyl, and linalyl anthranilate as well as anthranilic acid and 4-ketobenztriazine were repellent to birds. Water consumption was significantly reduced relative to control levels at concentrations as low as 0.05% (weight/volume) for the best repellents. Further statistical tests showed that reduction in consumption for the best repellents was absolute, not significantly different from zero consumption. Anthranilic acid isomers were moderately good repellents. The ability to generate a model predicting repellency allows for the efficient identification and development of ecologically sound, nonlethal, taxa-specific repellents to be used for the protection of wildlife in agricultural and industrial applications.  相似文献   

20.
Mosquito repellents are used around the globe to protect against nuisance biting and disease‐transmitting mosquitoes. Recently, there has been renewed interest in the development of repellents as tools to control the transmission of mosquito‐borne diseases. We present a new bioassay for the accurate assessment of candidate repellent compounds, using a synthetic odour that mimics the odour blend released by human skin. Using DEET (N,N‐diethyl‐meta‐toluamide) and PMD (p‐menthane‐3,8‐diol) as reference compounds, nine candidate repellents were tested, of which five showed significant repellency to the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). These included: 2‐nonanone; 6‐methyl‐5‐hepten‐2‐one; linalool; δ‐decalactone, and δ‐undecalactone. The lactones were also tested on the yellow fever mosquito Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae), against which they showed similar degrees of repellency. We conclude that the lactones are highly promising repellents, particularly because these compounds are pleasant‐smelling, natural products that are also present in human food sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号