首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How wolves were first domesticated is unknown. One hypothesis suggests that wolves underwent a process of self-domestication by tolerating human presence and taking advantage of scavenging possibilities. The puppy-like physical and behavioural traits seen in dogs are thought to have evolved later, as a byproduct of selection against aggression. Using speed of selection from rehoming shelters as a proxy for artificial selection, we tested whether paedomorphic features give dogs a selective advantage in their current environment. Dogs who exhibited facial expressions that enhance their neonatal appearance were preferentially selected by humans. Thus, early domestication of wolves may have occurred not only as wolf populations became tamer, but also as they exploited human preferences for paedomorphic characteristics. These findings, therefore, add to our understanding of early dog domestication as a complex co-evolutionary process.  相似文献   

2.
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.  相似文献   

3.
The domestic dog varies remarkably in cranial morphology. In fact, the differences in size and proportion between some dog breeds are as great as those between many genera of wild canids. In this study, I compare patterns of intracranial allometry and morphologic diversity between the domestic dog and wild canid species. The results demonstrate that the domestic dog is morphologically distinct from all other canids except its close relatives, the wolf-like canids. Following this, I compare patterns of static and ontogenetic scaling. Data on growth of domestic dogs are presented and used to investigate the developmental mechanisms underlying breed evolution. Apparently, most small breeds are paedomorphic with respect to certain morphologic characters. In dogs and other domestic animals, morphologic diversity among adults seems to depend on that expressed during development.  相似文献   

4.
Despite the fact that heterochronic processes seem to be an important process determining morphological evolution of the delphinid skull, previous workers have not found allometric scaling as relevant factor in the differentiation within the genus Sotalia. Here we analyzed the skull ontogeny of the estuarine dolphin S. guianensis and investigate differential growth and shape changes of two cranial regions – the neurocranium and the face – in order to evaluate the relevance of cranial compartmentalization on the ontogeny of this structure. Our results show that, even though both cranial regions stop growing at adulthood, the face has higher initial growth rates than the neurocranium. The rate of shape changes is also different for both regions, with the face showing a initially higher, but rapidly decreasing rate of change, while the neurocranium shows a slow decreasing rate, leading to persistent and localized shape changes throughout adult life, a pattern that could be related to epigenetic regional factors. The pattern of ontogenetic shape change described here is similar to those described for other groups of Delphinidae and also match intra and interspecific variation found within the family, suggesting that mosaic heterochrony could be an important factor in the morphological evolution of this group.  相似文献   

5.
6.
A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds.  相似文献   

7.
The method of polymerase chain reaction with a set of arbitrary primers (RAPD–PCR) was used to describe genetic variation and to estimate genetic diversity in East-European windhounds, Russian Borzoi and Russian Chortai. For comparison, windhounds of two West-European breeds (Whippet and Greyhound) and single dogs of other breed types (shepherd, terriers, mastiffs, and bird dogs) were examined. For all dog groups, their closest related species, the wolf Canis lupus, was used as an outgroup. Variation of RAPD markers was studied at several hierarchic levels: intra- and interfamily (for individual families of Russian Psovyi and Chortai windhounds), intra- and interbreed (for ten dog breeds), and interspecific (C. familiaris–C. lupus). In total, 57 dogs and 4 wolves were studied. Using RAPD–PCR with three primers, 93 DNA fragments with a length of 150–1500 bp were detected in several Windhound families with known filiation. These fragments were found to be inherited as dominant markers and to be applicable for estimation of genetic differences between parents and their offspring and for comparison of individuals and families with different level of inbreeding. A high level of intra- and interbreed diversity was found in Russian Borzoi and Russian Chortai. In these dogs, genetic similarity indices varied in a range of 72.2 to 93.4% (parents–offspring) and 68.0 to 94.5 (sibs). Based on the patterns of RAPD markers obtained using six primers, a dendrogram of genetic similarity between the wolf and different dog breeds was constructed, and indices of intragroup diversity were calculated. All studied breeds grouped into two clusters, windhounds (Borzoi-like dogs) and other dog breeds. Russian windhounds represent a very heterogeneous group, in which the Russian Borzoi is closer to Greyhound than the Russian Chortai. All studied wolves constituted a separate cluster. Significant differences were found between the wolf and dogs by the number of RAPD markers (92.8 and 86.1, respectively) and by the indices of genetic diversity (54.3 and 64.8%, respectively). The reason for the high intraspecific variation of dogs (including Russian windhounds) and the prospects of using the studied group of markers for genetic analysis and differentiation in C. familiaris are discussed.  相似文献   

8.
Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves, and an established dataset of 161 globally recognized dog breeds, applying multiple genetic methods to characterize the modes by which breeds are formed within a single geographic region. Our consideration of each of five genetic analyses reveals a series of development events that mirror historical modes of breed formation, but with variations unique to the codevelopment of early dog and human populations. Using 142,840 genome‐wide SNPs and a dataset of 1,609 canines, representing 182 breeds and 16 wild canids, we identified breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes.  相似文献   

9.
The canine major histocompatibility complex contains highly polymorphic genes, many of which are critical in regulating immune response. Since domestic dogs evolved from Gray Wolves (Canis lupus), common DLA class II alleles should exist. Sequencing was used to characterize 175 Gray Wolves for DLA class II alleles, and data from 1856 dogs, covering 85 different breeds of mostly European origin, were available for comparison. Within wolves, 28 new alleles were identified, all occurring in at least 2 individuals. Three DLA-DRB1, 8 DLA-DQA1, and 6 DLA-DQB1 alleles also identified in dogs were present. Twenty-eight haplotypes were identified, of which 2 three-locus haplotypes, and many DLA-DQA1/DQB1 haplotypes, are also found in dogs. The wolves studied had relatively few dog DLA alleles and may therefore represent a remnant population descended from Asian wolves. The single European wolf included carried a haplotype found in both these North American wolves and in many dog breeds. Furthermore, one wolf DQB1 allele has been found in Shih Tzu, a breed of Asian origin. These data suggest that the wolf ancestors of Asian and European dogs may have had different gene pools, currently reflected in the DLA alleles present in dog breeds.  相似文献   

10.
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi-omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high-protein or high-carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.  相似文献   

11.
Polymorphism of PBRs of the major histocompatibility complex (MHC) genes is well recognized, but the polymorphism also extends to proximal promoter regions. Examining DQB1 variability in dogs and wolves, we identified 7 promoter variants and 13 exon 2 alleles among 89 dogs, including a previously unknown DQB1 exon 2 allele, and 8 promoter variants and 9 exon 2 alleles among 85 wolves. As expected from previous studies and from a close chromosomal location, strong linkage disequilibrium was demonstrated in both wolves and dogs by having significantly fewer promoter/exon 2 combinations than expected from simulations of randomized data sets. Interestingly, we noticed weaker haplotypic associations in dogs than in wolves. Dogs had twice as many promoter/exon 2 combinations as wolves and an almost 2-fold difference in the number of exon 2 alleles per promoter variant. This difference was not caused by an admixture of breeds in our group of dogs because the high ratio of observed to expected number of haplotypes persisted within a single dog breed, the German Shepherd. Ewens-Watterson tests indicated that both the promoter and exon 2 are under the balancing selection, and both regions appear to be more recently derived in the dog than in the wolf. Hence, although reasons for the differences are unknown, they may relate to altered selection pressure on patterns of expression. Deviations from normal MHC expression patterns have been associated with autoimmune diseases, which occur frequently in several dog breeds. Further knowledge about these deviations may help us understand the source of such diseases.  相似文献   

12.
Modern genetic samples are commonly used to trace dog origins, which entails untested assumptions that village dogs reflect indigenous ancestry or that breed origins can be reliably traced to particular regions. We used high-resolution Y chromosome markers (SNP and STR) and mitochondrial DNA to analyze 495 village dogs/dingoes from the Middle East and Southeast Asia, along with 138 dogs from >35 modern breeds to 1) assess genetic divergence between Middle Eastern and Southeast Asian village dogs and their phylogenetic affinities to Australian dingoes and gray wolves (Canis lupus) and 2) compare the genetic affinities of modern breeds to regional indigenous village dog populations. The Y chromosome markers indicated that village dogs in the two regions corresponded to reciprocally monophyletic clades, reflecting several to many thousand years divergence, predating the Neolithic ages, and indicating long-indigenous roots to those regions. As expected, breeds of the Middle East and East Asia clustered within the respective regional village dog clade. Australian dingoes also clustered in the Southeast Asian clade. However, the European and American breeds clustered almost entirely within the Southeast Asian clade, even sharing many haplotypes, suggesting a substantial and recent influence of East Asian dogs in the creation of European breeds. Comparison to 818 published breed dog Y STR haplotypes confirmed this conclusion and indicated that some African breeds reflect another distinct patrilineal origin. The lower-resolution mtDNA marker consistently supported Y-chromosome results. Both marker types confirmed previous findings of higher genetic diversity in dogs from Southeast Asia than the Middle East. Our findings demonstrate the importance of village dogs as windows into the past and provide a reference against which ancient DNA can be used to further elucidate origins and spread of the domestic dog.  相似文献   

13.
Dogs exhibit more phenotypic variation than any other mammal and are affected by a wide variety of genetic diseases. However, the origin and genetic basis of this variation is still poorly understood. We examined the effect of domestication on the dog genome by comparison with its wild ancestor, the gray wolf. We compared variation in dog and wolf genes using whole-genome single nucleotide polymorphism (SNP) data. The d(N)/d(S) ratio (omega) was around 50% greater for SNPs found in dogs than in wolves, indicating that a higher proportion of nonsynonymous alleles segregate in dogs compared with nonfunctional genetic variation. We suggest that the majority of these alleles are slightly deleterious and that two main factors may have contributed to their increase. The first is a relaxation of selective constraint due to a population bottleneck and altered breeding patterns accompanying domestication. The second is a reduction of effective population size at loci linked to those under positive selection due to Hill-Robertson interference. An increase in slightly deleterious genetic variation could contribute to the prevalence of disease in modern dog breeds.  相似文献   

14.
People rank breeds of dogs for trainability despite a lack of evidence of breed differences in underlying behaviour. Instead of using behavioural information, people may use dog morphology to determine the trainability of breeds. Dogs are categorized as dolichocephalic, mesocephalic, or brachycephalic based on cephalic index, a ratio between skull width and length. Dolichocephalic breeds are anatomically more specialized for running and brachycephalic breeds are more specialized for fighting. Dog breeds rated as highly trainable are instead mesocephalic, morphological generalists. Looking trainable in dogs may reflect differences in physical morphology.  相似文献   

15.
Protein malnutrition has a significant and measurable effect on the rate and timing of growth. Heterochrony is generally viewed as the study of evolutionary changes in the relative rates and timing of growth and development. Although changes in growth commonly result from experimental manipulations of diet, nobody has previously attempted to explain such changes from a heterochronic perspective. We use a heterochronic perspective to compare a group of squirrel monkeys fed a low-protein diet to individuals on a high-protein diet, but, in contrast to previous works, we focus particularly on the effects of environmental and not genetic factors. In the present study, Gould's (1977) and Godfrey and Sutherland's (1996) methodologies for studying heterochrony, as well as geometric morphometrics, are used to compare two groups of Saimiri sciureus boliviensis. Two groups of Saimiri were constructed on the basis of the protein content in their diets: a high-protein group (HP) (N=12) and a low-protein group (LP) (N=12). All individuals are males born in captivity. Two major functional components of the skull, the neurocranium and the face, were analysed. Four minor components were studied in each major component. Comparison of craniofacial ontogeny patterns based on major and minor components suggests that changes in the skull of LP animals can be explained by heterochrony. The skull of LP animals exhibits isomorphism produced by proportioned dwarfism. Our results suggest that heterochrony can be environmentally, rather than exclusively genetically, induced. The study of genetic assimilation (Waddington, 1953, 1956; see Scharloo, 1991; Hallgrimsson et al., 2002) has demonstrated that environmentally induced phenotypes often have a genetic basis, and thus parallel changes can be easily induced genetically. It is possible that proportioned dwarfism is far more common than currently appreciated.  相似文献   

16.
Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.  相似文献   

17.
The origin and evolution of the domestic dog remains a controversial question for the scientific community, with basic aspects such as the place and date of origin, and the number of times dogs were domesticated, open to dispute. Using whole genome sequences from a total of 58 canids (12 gray wolves, 27 primitive dogs from Asia and Africa, and a collection of 19 diverse breeds from across the world), we find that dogs from southern East Asia have significantly higher genetic diversity compared to other populations, and are the most basal group relating to gray wolves, indicating an ancient origin of domestic dogs in southern East Asia 33 000 years ago. Around 15 000 years ago, a subset of ancestral dogs started migrating to the Middle East, Africa and Europe, arriving in Europe at about 10 000 years ago. One of the out of Asia lineages also migrated back to the east, creating a series of admixed populations with the endemic Asian lineages in northern China before migrating to the New World. For the first time, our study unravels an extraordinary journey that the domestic dog has traveled on earth.  相似文献   

18.
Up to recently, studies on dog genetics were rather scare notwithstanding the enormous potential that the canine model can offer in the study of the genotype/phenotype relationship and the analysis of the causes of many genetic diseases, with simple or complex inheritance, that affect dogs but also the human population. This potentiality is essentially due to the natural history of dogs whose domestication from wolves dated back 15,000 years, at least. All modern dogs originated from a limited number of female wolves from Eastern Asia. By applying a combination of selections and strong inbreeding practices, humans have created over 350 breeds, each of them corresponding to a genetic isolate and altogether offering a unique panel of polymorphism never encountered in any other mammals. In this review we summarized what makes dogs an unavoidable model. Contrary to the classical models like the two yeasts, nematode, fish, fly, mouse, or rat mainly used to understand the function of genes, dog with the creation across the centuries of numerous breeds offers a unique opportunity to study the role of their alleles. We report recent data on the construction of genomic maps and on the sequencing program of the dog genome launched by the National Institute of Health (NIH). To take fully advantage of the canine model, we advocate for the systematic construction of a rich canine single nucleotide polymorphisms (SNP) ressource to perform linkage desiquilibrium studies of normal or pathological traits as well as to get insight into the genetic diversity of the canine species.  相似文献   

19.
The Kintamani dog is an evolving breed indigenous to the Kintamani region of Bali. Kintamani dogs cohabitate with feral Bali street dogs, although folklore has the breed originating 600 years ago from a Chinese Chow Chow. The physical and personality characteristics of the Kintamani dog make it a popular pet for the Balinese, and efforts are currently under way to have the dog accepted by the Federation Cynologique Internationale as a recognized breed. To study the genetic background of the Kintamani dog, 31 highly polymorphic short tandem repeat markers were analyzed in Kintamani dogs, Bali street dogs, Australian dingoes, and nine American Kennel Club (AKC) recognized breeds of Asian or European origin. The Kintamani dog was identical to the Bali street dog at all but three loci. The Bali street dog and Kintamani dog were most closely aligned with the Australian dingo and distantly related to AKC recognized breeds of Asian but not European origin. Therefore, the Kintamani dog has evolved from Balinese feral dogs with little loss of genetic diversity.  相似文献   

20.
The vertebrate skull is anatomically complex and phylogenetically diverse; it presents unique opportunities to examine the role of developmental processes in evolutionary change. Previous studies have largely examined phylogenetic trends in tissue composition or change in the timing of developmental events (heterochrony). Additional important insights may be gained if skull evolution and development are viewed from the standpoint of pattern formation. Contemporary models of pattern formation offer the possibility of linking developmental mechanisms of cranial morphogenesis from the level of genes, through cell biology, to adult form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号