首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modified natural surfactant preparations, used for treatment of respiratory distress syndrome in premature infants, contain phospholipids and the hydrophobic surfactant protein (SP)-B and SP-C. Herein, the individual and combined effects of SP-B and SP-C were evaluated in premature rabbit fetuses treated with airway instillation of surfactant and ventilated without positive end-expiratory pressure. Artificial surfactant preparations composed of synthetic phospholipids mixed with either 2% (wt/wt) of porcine SP-B, SP-C, or a synthetic poly-Leu analog of SP-C (SP-C33) did not stabilize the alveoli at the end of expiration, as measured by low lung gas volumes of approximately 5 ml/kg after 30 min of ventilation. However, treatment with phospholipids containing both SP-B and SP-C/SP-C33 approximately doubled lung gas volumes. Doubling the SP-C33 content did not affect lung gas volumes. The tidal volumes were similar in all groups receiving surfactant. This shows that SP-B and SP-C exert different physiological effects, since both proteins are needed to establish alveolar stability at end expiration in this animal model of respiratory distress syndrome, and that an optimal synthetic surfactant probably requires the presence of mimics of both SP-B and SP-C.  相似文献   

2.
Surfactant proteins B and C (SP-B and SP-C) are present in natural derived surfactant preparations used for treatment of respiratory distress syndrome. Herein the surface activity of an SP-C analogue (SP-C(LKS)), a hybrid peptide between SP-C and bacteriorhodopsin (SP-C/BR) and a model peptide (KL(4)) was studied with a captive bubble surfactometer (CBS). The peptides were mixed with either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidylglycerol (PG) (7:3, by weight) or DPPC/PG/palmitic acid (68:22:9, by weight) at a concentration of 1 mg/ml in HEPES buffer, pH 6.9 and a polypeptide/lipid weight ratio of 0.02--0.03. In some lipid/peptide preparations also 2% of SP-B was included. Adsorption, monitored as surface tension vs. time for 10 min after bubble formation did not show discernible differences for the whole set of preparations. Equilibrium surface tensions of approximately 25 mN/m were reached after 5--10 min for all preparations, although those with SP-C/BR appeared not to reach end point of adsorption within 10 min. Area compression needed to reach minimum surface tension of 0.5--2.0 mN/m was least for the KL(4) preparation, about 13% in the first cycle. 3% SP-C(LKS) in DPPC:PG (7:3, by weight) reached minimum surface tension upon 27% compression in the first cycle. If DPPC:PG:PA (68:22:9, by weight) was used instead only 16% area compression was needed and 14% if also 2% SP-B was included. 3% SP-C(LKS) in DPPC:PG (7:3, by weight)+2% SP-B needed 34% compression to reach minimum surface tension. The replenishment of material from a surface associated surfactant reservoir was estimated with subphase depletion experiments. With the 2% KL(4) preparation incorporation of excess material took place at a surface tension of 25--35 mN/m during stepwise bubble expansion and excess material equivalent to 4.3 monolayers was found. When 2% SP-B was added to 3% SP-C(LKS) in DPPC:PG (7:3, by weight) the number of excess monolayers increased from 1.5 to 3.6 and the incorporation took place at 30--40 mN/m. When SP-B was added to 3% SP-C(LKS) in DPPC:PG:PA (68:22:9, by weight) the number of excess monolayers increased from 0.5 to 3.4 and incorporation took place at 40--50 mN/m. With 2% SP-C/BR incorporation took place at 40--45 mN/m, frequent instability clicks were observed and excess material of approximately 1.1 monolayer was estimated.  相似文献   

3.
Calcium interactions in pulmonary surfactant   总被引:2,自引:0,他引:2  
The surfactant properties of natural bovine pulmonary surfactant, its lipid extracts and acetone precipitates of lipid extracts have been examined with an artificial alveolus model, the pulsating-bubble surfactometer. At bulk concentrations of 0.4% (wt./vol.) phospholipid in saline, all three preparations exhibited surfactant activity, i.e., were capable of reducing the surface tension of the pulsating bubble to approx. 27 dynes/cm at maximum bubble radius and to near zero at minimum bubble radius. At a concentration of 0.1% (wt./vol.) in saline, only natural surfactant was effective. Acetone-precipitated surfactant at 0.1% (wt./vol.) achieved these criteria in the presence of 5 mM calcium, but 15-20 mM calcium was required to restore the surfactant activity of lipid extract surfactant. Chemical analysis revealed that lipid extraction decreases the protein content but does not alter the endogenous calcium levels. A calcium requirement for natural surfactant could only be demonstrated after repeated treatment with chelators for divalent cations. Surfactant activity was restored by low levels of calcium or high levels of magnesium. Paradoxically, a calcium requirement could not be demonstrated by treating acetone-precipitated lipid extract with chelators. The subtle differences noted between natural, lipid extract and acetone-precipitated lipid extract surfactant with the pulsating-bubble assay show that the latter preparations do not represent simplified model systems for the natural product.  相似文献   

4.
Available surfactants for treatment of respiratory distress syndrome in newborn infants are derived from animal lungs, which limits supply and poses a danger of propagating infectious material. Poly-Val-->poly-Leu analogs of surfactant protein (SP)-C can be synthesized in large quantities and exhibit surface activity similar to SP-C. Here, activity of synthetic surfactants containing a poly-Leu SP-C analog (SP-C33) was evaluated in ventilated premature newborn rabbits. Treatment with 2.5 ml/kg body wt of 2% (wt/wt) SP-C33 in 1,2-dipalmitoyl-sn-3-glycero phosphoryl choline (DPPC)-1-palmitoyl-2-oleoyl-sn-3-glycero phosphoryl choline (POPC)-1-palmitoyl-2-oleoyl-sn-3-glycero phosphoryl glycerol (POPG), 68:0:31, 68:11:20, or 68:16:15 (wt/wt/wt) suspended at 80 mg/ml gave tidal volumes (Vt) of 20-25 ml/kg body wt, with an insufflation pressure of 25 cmH2O and no positive end-expiratory pressure (PEEP), comparable to the Vt for animals treated with the porcine surfactant Curosurf. Nontreated littermates had a Vt of approximately 2 ml/kg body wt. The Vt for SP-C33 in DPPC-egg phosphatidylglycerol-palmitic acid [68:22:9 (wt/wt/wt)], DPPC-POPG-palmitic acid [68:22:9 (wt/wt/wt)], and DPPC-POPC-POPG [6:2:2 (wt/wt/wt)] was 15-20 ml/kg body wt. Histological examination of lungs from animals treated with SP-C33-based surfactants showed incomplete, usually patchy air expansion of alveolar spaces associated with only mild airway epithelial damage. Lung gas volume after 30 min of mechanical ventilation were more than threefold larger in animals treated with Curosurf than in those receiving SP-C33 in DPPC-POPC-POPG, 68:11:20. This difference could be largely counterbalanced by ventilation with PEEP (3-4 cmH2O). An artificial surfactant based on SP-C33 improves Vt in immature newborn animals ventilated with standardized peak pressure but requires PEEP to build up adequate lung gas volumes.  相似文献   

5.
The main function of pulmonary surfactant, a mixture of lipids and proteins, is to reduce the surface tension at the air/liquid interface of the lung. The hydrophobic surfactant proteins SP-B and SP-C are required for this process. When testing their activity in spread films in a captive bubble surfactometer, both SP-B and SP-C showed concentration dependence for lipid insertion as well as for lipid film refinement. Higher activity in DPPC refinement of the monolayer was observed for SP-B compared with SP-C. Further differences between both proteins were found, when subphase phospholipid vesicles, able to create a monolayer-attached lipid reservoir, were omitted. SP-C containing monolayers showed gradually increasing minimum surface tensions upon cycling, indicating that a lipid reservoir is required to prevent loss of material from the monolayer. Despite reversible cycling dynamics, SP-B containing monolayers failed to reach near-zero minimum surface tensions, indicating that the reservoir is required for stable films.  相似文献   

6.
The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (<2% of surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function.  相似文献   

7.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

8.
Recent data suggest that a functional cooperation between surfactant proteins SP-B and SP-C may be required to sustain a proper compression-expansion dynamics in the presence of physiological proportions of cholesterol. SP-C is a dually palmitoylated polypeptide of 4.2 kDa, but the role of acylation in SP-C activity is not completely understood. In this work we have compared the behavior of native palmitoylated SP-C and recombinant nonpalmitoylated versions of SP-C produced in bacteria to get a detailed insight into the importance of the palmitic chains to optimize interfacial performance of cholesterol-containing surfactant films. We found that palmitoylation of SP-C is not essential for the protein to promote rapid interfacial adsorption of phospholipids to equilibrium surface tensions (∼22 mN/m), in the presence or absence of cholesterol. However, palmitoylation of SP-C is critical for cholesterol-containing films to reach surface tensions ≤1 mN/m at the highest compression rates assessed in a captive bubble surfactometer, in the presence of SP-B. Interestingly, the ability of SP-C to facilitate reinsertion of phospholipids during expansion was not impaired to the same extent in the absence of palmitoylation, suggesting the existence of palmitoylation-dependent and -independent functions of the protein. We conclude that palmitoylation is key for the functional cooperation of SP-C with SP-B that enables cholesterol-containing surfactant films to reach very low tensions under compression, which could be particularly important in the design of clinical surfactants destined to replacement therapies in pathologies such as acute respiratory distress syndrome.  相似文献   

9.
Two novel C16:0 sulfur-linked phosphonolipids (S-lipid and SO(2)-lipid) and two ether-linked phosphonolipids (C16:0 DEPN-8 and C16:1 UnDEPN-8) were studied for surface behavior alone and in mixtures with purified bovine lung surfactant proteins (SP)-B and/or SP-C. Synthetic C16:0 phosphonolipids all had improved adsorption and film respreading compared to dipalmitoyl phosphatidylcholine, and SO(2)-lipid and DEPN-8 reached maximum surface pressures of 72mN/m (minimum surface tensions of <1mN/m) in compressed films on the Wilhelmy balance (23 degrees C). Dispersions of DEPN-8 (0.5mg/ml) and SO(2)-lipid (2.5mg/ml) also reached minimum surface tensions of <1mN/m on a pulsating bubble surfactometer (37 degrees C, 20cycles/min, 50% area compression). Synthetic lung surfactants containing DEPN-8 or SO(2)-lipid+0.75% SP-B+0.75% SP-C had dynamic surface activity on the bubble equal to that of calf lung surfactant extract (CLSE). Surfactants containing DEPN-8 or SO(2)-lipid plus 1.5% SP-B also had very high surface activity, but less than when both apoproteins were present together. Adding 10wt.% of UnDEPN-8 to synthetic lung surfactants did not improve dynamic surface activity. Surfactants containing DEPN-8 or SO(2)-lipid plus 0.75% SP-B/0.75% SP-C were chemically and biophysically resistant to phospholipase A(2) (PLA(2)), while CLSE was severely inhibited by PLA(2). The high activity and inhibition resistance of synthetic surfactants containing DEPN-8 or SO(2)-lipid plus SP-B/SP-C are promising for future applications in treating surfactant dysfunction in inflammatory lung injury.  相似文献   

10.
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.  相似文献   

11.
The captive bubble tensiometer was employed to study interactions of phospholipid (PL) mixtures of dipalmitoylphosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) at 50 microg/ml with physiological levels of the surfactant protein (SP) A SP-B, and SP-C alone and in combination at 37 degrees C. All surfactant proteins enhanced lipid adsorption to equilibrium surface tension (gamma), with SP-C being most effective. Kinetics were consistent with the presence of two adsorption phases. Under the conditions employed, SP-A did not affect the rate of film formation in the presence of SP-B or SP-C. Little difference in gamma(min) was observed between the acidic POPG and the neutral POPC systems with SP-B or SP-C with and without SP-A. However, gamma(max) was lower with the acidic POPG system during dynamic, but not during quasi-static, cycling. Considerably lower compression ratios were required to generate low gamma(min) values with SP-B than SP-C. DPPC-POPG-SP-B was superior to the neutral POPC-SP-B system. Although SP-A had little effect on film formation with SP-B, surface activity during compression was enhanced with both PL systems. In the presence of SP-C, lower compression ratios were required with the acidic system, and with this mixture, SP-A addition adversely affected surface activity. The results suggest specific interactions between SP-B and phosphatidylglycerol, and between SP-B and SP-A. These observations are consistent with the presence of a surface-associated surfactant reservoir which is involved in generating low gamma during film compression and lipid respreading during film expansion.  相似文献   

12.
Pulmonary surfactant contains at least three unique proteins: SP-A, SP-B and SP-C. SP-B and SP-C from bovine surfactant are markedly hydrophobic and have molecular masses between 3 and 26 kDa. We identify surfactant proteins under nonreducing conditions on polyacrylamide gels with approximate molecular mass of 5, 14, 26 kDa (SP-5, 14, 26) when organic solvent-soluble material is eluted from a Sephadex LH-20 size exclusion column followed by separation on a high-performance reverse-phase chromatography system. These bands correspond to monomeric SP-C, oligomeric SP-C and oligomeric SP-B, respectively. Computer analysis (Eisenberg-hydrophobic moment) of sequences for these proteins suggests that SP-B contains surface-seeking amphiphilic segments. In contrast, SP-C resembles a more hydrophobic transmembrane anchoring peptide. Dispersions containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, palmitic acid and multimeric SP-B and SP-C duplicate the surface activity of natural surfactant when assayed in a pulsating bubble surfactometer. We speculate that oligomers of SP-B and monomers and oligomers of SP-C may act cooperatively in affecting surfactant function. An important function of SP-B and SP-C may be to affect the ordering of surfactant lipids so that rates of transport of surfactant lipids to the hypophase surface in the alveoli are enhanced.  相似文献   

13.
As birds have tubular lungs that do not contain alveoli, avian surfactant predominantly functions to maintain airflow in tubes rather than to prevent alveolar collapse. Consequently, we have evaluated structural, biochemical, and functional parameters of avian surfactant as a model for airway surfactant in the mammalian lung. Surfactant was isolated from duck, chicken, and pig lung lavage fluid by differential centrifugation. Electron microscopy revealed a uniform surfactant layer within the air capillaries of the bird lungs, and there was no tubular myelin in purified avian surfactants. Phosphatidylcholine molecular species of the various surfactants were measured by HPLC. Compared with pig surfactant, both bird surfactants were enriched in dipalmitoylphosphatidylcholine, the principle surface tension-lowering agent in surfactant, and depleted in palmitoylmyristoylphosphatidylcholine, the other disaturated phosphatidylcholine of mammalian surfactant. Surfactant protein (SP)-A was determined by immunoblot analysis, and SP-B and SP-C were determined by gel-filtration HPLC. Neither SP-A nor SP-C was detectable in either bird surfactant, but both preparations of surfactant contained SP-B. Surface tension function was determined using both the pulsating bubble surfactometer (PBS) and capillary surfactometer (CS). Under dynamic cycling conditions, where pig surfactant readily reached minimal surface tension values below 5 mN/m, neither avian surfactant reached values below 15 mN/m within 10 pulsations. However, maximal surface tension of avian surfactant was lower than that of porcine surfactant, and all surfactants were equally efficient in the CS. We conclude that a surfactant composed primarily of dipalmitoylphosphatidylcholine and SP-B is adequate to maintain patency of the air capillaries of the bird lung.  相似文献   

14.
Surfactant protein C (SP-C) is a lipopeptide that contains two thioester-linked palmitoyl groups and is considered to be important for formation of the alveolar surface active lipid film. Here, a non- or dipalmitoylated SP-C analogue (SP-C(Leu)), in which all helical Val residues were replaced with Leu and Cys-5 and Cys-6 were replaced with Ser, was tested for surface activity in a captive bubble system (CBS). SP-C(Leu), either palmitoylated at Ser-5 and Ser-6 or non-palmitoylated, was added to mixtures of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidyl glycerol (PG)/palmitic acid (PA), 68:22:9, (by mass) at a concentration of 2 and 5%. With 2% peptide, surface film formation was rapid, reaching a surface tension below 25 mN/m within 5 s, but the samples with 5% SP-C(Leu) required more than 20 s to reach values below 25 mN/m. Minimum surface tension for the samples with dipalmitoylated SP-C(Leu) was below 1.5 mN/m and very stable, as the surface tension increased by less than 0.5 mN/m within 10 min at constant bubble volume. Minimum surface tension for the non-palmitoylated SP-C(Leu) was approximately 2 and 5 mN/m for 2 and 5% peptide, respectively, but the films were less stable as seen by frequent bubble clicking at low surface tensions. Films with dipalmitoylated SP-C(Leu) that were dynamically cycled at 20-30 cycles/min were substantially less compressible at a surface tension of 20 mN/m (0.007 m/mN) than those that contained the non-palmitoylated peptide (0.02 m/mN). After subphase depletion, the incorporation of lipids into the surface active film during initial bubble expansion occurred at a relatively low surface tension (about 35 mN/m) for the samples with dipalmitoylated SP-C(Leu) compared to approximately 45 mN/m for those containing the non-palmitoylated peptide. Furthermore, for samples that contained non-palmitoylated SP-C(Leu), the ability to reach near zero stable surface tension was lost after a few adsorption steps, whereas with the dipalmitoylated peptide the film quality did not deteriorate even after more than 10 expansion steps and the incorporation of reservoir material equivalent to more than two monolayers. It appears that the covalently linked palmitoyl groups of the SP-C analogue studied are important for the mechanical stability of the lipid film, for the capacity to incorporate material from the reservoir into the surface active film upon area expansion, and for the low film compressibility of dynamically cycled films.  相似文献   

15.
Two low-molecular-weight hydrophobic proteins with nominal molecular weights Mr = 15,000 and Mr = 3,500 have been isolated from the lipid extracts of bovine pulmonary surfactant by several methods, including (a) dialysis plus silicic acid chromatography, (b) elution from Waters SEP-PAK silica cartridges with a variety of solvent mixtures, and (c) ultrafiltration. As detailed in the text, these proteins have been designated surfactant-associated protein-BC (SP-BC) (15 kDa: nonreduced), and SP-C (3.5 kDa). The biophysical activities of reconstituted surfactant containing these proteins and the phospholipids present in lung surfactant have been compared with the biophysical activities of bovine lipid extract surfactant on a pulsating bubble surfactometer using a phospholipid concentration of 10 mg/ml. At this concentration, unmodified lipid extract surfactant reduces the surface tension of the pulsating bubble to near 0 within 10 pulsations at 20 cycles per min. Similar biophysical properties were observed with modified lipid extract surfactant in which the relative concentration of hydrophobic protein had been reduced from 1 to 0.4% (W/W) of the phospholipids by addition of dipalmitoylphosphatidylcholine (DPPC) or DPPC plus phosphatidylglycerol. Reconstituted surfactants, which contained partially delipidated SP-BC (15 kDa: nonreduced) obtained by method (a) at a relative concentration of 0.1%, were also capable of reducing the surface tension to near 0 mN/m. Preparations of SP-BC (15 kDa: nonreduced) obtained by method (b), which had been subjected to very low pH levels during isolation and were extensively delipidated, exhibited full biophysical activity only at higher protein concentrations and with prolonged pulsation. Extensively delipidated samples of SP-BC obtained by method (c) exhibited impaired biophysical activities, even when prepared with neutral organic solvents. Reconstituted surfactant samples containing SP-C (3.5 kDa) obtained by any of the methods listed above were only able to reduce the surface tension at minimum bubble radius to approx. 20 mN/m. The biophysical activity of SP-C (3.5 kDa) was not significantly affected by low pH or extensive delipidation. Reconstituted samples containing mixtures of SP-BC (15 kDa: nonreduced) and SP-C (3.5 kDa) were more effective than samples containing either protein alone. Furthermore, with samples containing both hydrophobic proteins the final surface tensions at maximum bubble radius were attained within a few bubble pulsations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of acyl-chain length of phospholipid on the membrane permeabilizing activity of amphotericin B (AmB) was examined using egg phosphatidylcholine (eggPC) liposomes containing 5% or 20% phosphatidylcholine with various lengths of fatty acyl chains from C(10) to C(18); 1,2-dicapryloyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The membrane activity of AmB was evaluated by two methods; the drug was added to a liposome suspension (added-via-aqua), or mixed with lipids prior to liposome preparation (mixed-with-lipid). In both cases, K(+) influx by AmB was measured as pH change inside liposomes by 31P-NMR. The C(10) and C(12) acyl phospholipids markedly enhanced the activity of AmB, the C(14) and C(16) lipids virtually showed no effect, and the C(18) lipid was inhibitory to the AmB's action. Clear distinction between the C(12) and C(14) lipids, which differ only in acyl chains by two carbons, implies that molecular interaction between phospholipid and AmB is partly due to the matching of their hydrophobic length.  相似文献   

17.
The respiratory distress syndrome of premature infants is caused by both surfactant deficiency and surfactant inhibition by capillary-alveolar leakage of serum factors. Dispersions of a standard surfactant lipid mixture, with and without various synthetic peptides, modeled on human surfactant proteins SP-B (residues 1-25, 49-66, 1-78) and SP-C (residues 1-10), were evaluated for inhibition by serum and by plasma constituents using a pulsating bubble surfactometer. Inhibition was derived from the changes in surface properties of these mixtures after addition of human serum or plasma constituents. Modified bovine surfactant (TA) containing native SP-B and SP-C was used as a control. In the absence of serum inhibitors, mixtures with synthetic peptides gave results similar to surfactant TA. However, inhibition was more evident in the dispersions with synthetic peptides when compared with surfactant TA. The peptide/phospholipid mixture with the entire sequence of SP-B and the first 10 residues of SP-C were more resistant to inhibition than mixtures with synthetic peptides containing fewer domains. Addition of calcium reduced the inhibitory effects of serum both in mixtures containing synthetic peptides and in surfactant TA. Therefore, synthetic SP-B and SP-C peptides in surfactant lipids, in cooperation with calcium, permit resistance to inhibition by several plasma constituents that probably inactivate surfactant by a variety of different mechanisms.  相似文献   

18.
B Pastrana  A J Mautone  R Mendelsohn 《Biochemistry》1991,30(41):10058-10064
SP-C, a highly hydrophobic, 3.7-kDa protein constituent of lung surfactant, has been isolated from bovine lung lavage, purified, and reconstituted into binary lipid mixtures of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) and 1,2-dipalmitoylphosphatidylglycerol (DPPG). Fourier transform infrared (FT-IR) spectroscopy has been applied to examine SP-C secondary structure, the average orientation of alpha-helical segments relative to the bilayer normal in membrane films, and the effect of protein on the thermotropic properties of the phospholipid acyl chains. In addition, dynamic surface measurements were made on phospholipid films at the A/W interface in the presence and absence of SP-C. SP-C (0.5 mol %) was found to possess about 60% alpha-helical secondary structure in lipid vesicles. Higher levels (1.5 mol %) of SP-C resulted in a slight increase of beta-forms, possibly resulting from protein aggregation. The helical segments exhibited an average angle of orientation of about 24 degrees with respect to the bilayer normal, suggesting a trans-bilayer orientation of the peptide. The observation that 70% of the peptide bond hydrogens are hard to exchange in D2O further reflects the hydrophobic nature of the molecule. SP-C produced little effect on the thermotropic properties of the binary lipid mixture, as measured from acyl chain C-H and C-D stretching frequencies. However, the presence of 1 mol % protein markedly reduced the viscance and increased the elasticity of surface films suggesting a mechanism by which SP-C facilitates the spreading of phospholipids on an aqueous surface. The possible physiological consequences of these observations are discussed.  相似文献   

19.
We tested a new captive bubble surface tensiometer with films adsorbed from aqueous suspensions of rabbit lung surfactant and a bovine lung surfactant lipid extract and with films of dipalmitoyl-sn-3-glycerophosphorylcholine (DPPC) spread from solvents. The lack of tubes penetrating the bubble surface eliminated potential leakage pathways for the surface film, which was compressed by increasing external pressure. Surface tensions and areas were calculated directly from bubble shapes without the need of pressure measurements. After only one to two compressions, the rabbit surfactant films exhibited the low surface tension, collapse rates, and compressibilities characteristic of the alveolar surface in situ and approached the behavior of spread DPPC films. The bubble "clicking" phenomenon described earlier by Pattle (Proc. R. Soc. Lond. B Biol. Sci. 148: 217-240, 1958) was also reproduced, but only with the bovine extract, which did not perform as well as the rabbit surfactant in surface tests. These findings suggest that surfactant apoprotein SP-A, which was probably present in the rabbit but not the bovine preparations, enhances both adsorption and stability of pulmonary surfactant monolayers.  相似文献   

20.
Hydrophobic lung surfactant proteins B and C (SP-B and SP-C) are critical for normal respiration in vertebrates, and each comprises specific structural attributes that enable the surface-tension-reducing ability of the lipid-protein mixture in lung surfactant. The difficulty in obtaining pure SP-B and SP-C on a large scale has hindered efforts to develop a non-animal-derived surfactant replacement therapy for respiratory distress. Although peptide-based SP-C mimics exhibit similar activity to the natural protein, helical peptide-based mimics of SP-B benefit from dimeric structures. To determine if in vitro surface activity improvements in a mixed lipid film could be garnered without creating a dimerized structural motif, a helical and cationic peptoid-based SP-B mimic was modified by SP-C-like N-terminus alkylation with octadecylamine. “Hybridized” mono- and dialkylated peptoids significantly decreased the maximum surface tension of the lipid film during cycling on the pulsating bubble surfactometer relative to the unalkylated variant. Peptoids were localized in the fluid phase of giant unilamellar vesicle lipid bilayers, as has been described for SP-B and SP-C. Using Langmuir-Wilhelmy surface balance epifluorescence imaging (FM) and atomic force microscopy (AFM), only lipid-alkylated peptoid films revealed micro- and nanostructures closely resembling films containing SP-B. AFM images of lipid-alkylated peptoid films showed gel condensed-phase domains surrounded by a distinct phase containing “nanosilo” structures believed to enhance re-spreading of submonolayer material. N-terminus alkylation may be a simple, effective method for increasing lipid affinity and surface activity of single-helix SP-B mimics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号