首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The expression of myosin heavy chain (MHC) subunits and dihydropyridine receptors (DHPRs) from red and white tail muscles of cultured smolts of Atlantic salmon Salmo salar was analysed from samples taken: (1) before the fish were transferred to the river and (2) after the migration distance of c . 50 km. The relative work load of migrating fish, estimated on the basis of swimming speed of Atlantic salmon and discharge rate of the River Simojoki, Finland, was maximally 1700 times higher than that of fish in culture. The data show that after five migration days the density of DHPRs in the muscles of the smolts was increased already. Furthermore, the results indicated a transition from the fast‐to‐slow MHC isoform. Transfer of fish to a natural environment and downstream migration thus had a significant effect on the expression of muscle proteins.  相似文献   

2.
Eighty coho salmon Oncorhynchus kisutch smolts (40 wild and 40 hatchery-reared) were surgically implanted with acoustic transmitters and released into the Quinsam River over 2 days. Differences in physiology, travel time and migratory behaviour were examined between wild and hatchery-reared fish. In addition, tagged and control fish of both wild and hatchery-reared stock were raised for 3 months following surgery to compare survival and tag retention. Detection ranges of the acoustic receivers were tested in the river, estuary and ocean in a variety of flow conditions and tide levels. Receivers were placed in the river, estuary and up to 50 km north and south from the river mouth in the marine environment. Wild smolts were significantly smaller by mass, fork length and condition factor than hatchery-reared smolts and exhibited significantly higher levels of sodium, potassium and chloride in their blood plasma than hatchery-reared smolts. The gill Na+K+-ATPase activity was also significantly higher in the wild coho smolts at the time of release. Ninety-eight per cent of wild and 80% of hatchery-reared fish survived to the estuary, 8 km downstream of the release site. No difference was found in migration speed, timing or survival between smolts released during daylight and those released after dark. Wild smolts, however, spent less time in the river and estuary, and as a result entered the ocean earlier than hatchery-reared smolts. Average marine swimming speeds for wild smolts were double those of their hatchery-reared counterparts. While hatchery smolts dispersed in both a northward and southward direction upon entering the marine environment, the majority of wild smolts travelled north from the Campbell River estuary. The wild coho salmon smolts were more physiologically fit and ready to enter sea water than the hatchery-reared smolts, and as a result had higher early survival rates and swimming speeds.  相似文献   

3.
In 1982 and 1983 descending wild Atlantic salmon smolts, Salmo salar L., were caught in a fish-trap at the mouth of the River Imsa. Together with hatchery-reared smolts of the River Imsa strain they were tagged and released at three different sites of the Imsa-Lutsi watercourse: in the Imsa River 1 km above the trap, and in two lakes, 3 and 11 km upstream of the trap. The recapture-rate in the fish-trap decreased with increased migration distance. The hatchery-reared smolts migrated downstream faster than wild smolts. Lake-released smolts were considerably delayed in their downstream migration compared to the river released smolts. The results are discussed in relation to environmental and physiological parameters.  相似文献   

4.
Aarestrup  Kim  Nielsen  Christian  Koed  Anders 《Hydrobiologia》2002,483(1-3):95-102
The downstream migration of Atlantic salmon (Salmo salarL.) and sea trout smolt (S. trutta L.) was investigated using radio telemetry in the spring of 1999 and 2000. Forty wild sea trout smolts, 20 F1 sea trout smolts, 20 hatchery salmon smolts and 20 salmon smolts from river stockings were radio tagged and released in the Danish River Lilleaa. The downstream migration of the different groups of fish was monitored by manual tracking and by three automatic listening stations. The downstream migration of radio tagged smolts of both species occurred concurrently with their untagged counterparts. The diel migration pattern of the radio tagged smolts was predominantly nocturnal in both species. Wild sea trout smolt migrated significantly faster than both the F1 trout and the introduced salmon. There was no correlation between net ground speed, gill Na+,K+-ATPase activity or fish length in any of the different groups. The migration speed of wild sea trout smolts was positively correlated with water discharge in both years. In F1 sea trout smolts, migration speed was positively correlated with temperature in 1999. The migration speed of salmon smolts did not correlate to any of the investigated parameters.  相似文献   

5.
Discriminant function analysis was used to distinguish morphologically between samples of parr, smolts and adult Atlantic salmon Salmo salar from several hatchery and river systems in Ireland. The effect of habitat shift was investigated in Atlantic salmon parr. Parr grown from the eyed‐egg stage with a non‐sibling group in a hatchery environment, came to resemble the mean body shape of their host hatchery Atlantic salmon stock more closely than that of a full sibling group grown at their natal hatchery. Wild Atlantic salmon smolts differed in shape from hatchery‐reared smolts. This difference was less pronounced, but still statistically significant when wild adults were compared with hatchery‐reared adults captured in the coastal drift‐net fishery after a year spent at sea. Rearing conditions had a significant impact on the production and growth of fish body shape. This in turn may have affected adaptability and survivorship of ranched Atlantic salmon in the marine environment.  相似文献   

6.
The sea louse Lepeophtheirus salmonis (Kr?yer, 1837) (Copepoda: Caligidae) is an ectoparasite of salmonid fish. It has earlier been proposed that the free-swimming infectious copepodid stage of L. salmonis gather at river mouths to infect wild Atlantic salmon Salmo salar L. and sea trout S. trutta L. smolts during their seaward migration. This study used aquarium-based methods to investigate the survival, infective ability and behaviour of L. salmonis copepodids exposed to short periods of low salinity levels, such as those encountered at river mouths. Survival of free-swimming copepodids was found to be severely compromised at salinity levels below 29 parts per thousand (ppt). Attachment to an S. salar host did not aid copepodid survival during post-infection exposure to low salinity environment, and a reduction in salinity appears to reduce the ability of copepodids to remain attached to S. salar smolts. Pre-infection exposure of copepodids to reduced salinity levels reduced infection of S. salar. Infection levels at reduced salinity were lower than predicted from the free-swimming survival experiment, suggesting that low salinity compromises the copepodids' ability to sense or respond to the presence of a host. In salinity gradients, copepodids demonstrated avoidance of salinities below 27 ppt, by both altering their swimming behaviour and changing the orientation of passive sinking. Avoidance of low salinity levels may be due to their adverse effects on copepodid physiology, as suggested by the reduction in survival. Sinking rates were also faster in reduced salinity, suggesting that remaining in the water column would be more energetically demanding for the copepodids at reduced salinity. These results show that both survival and host infectivity of L. salmonis are severely compromised by short-term exposure to reduced salinity levels.  相似文献   

7.
The recapture rate and survival of hatchery‐reared Atlantic salmon Salmo salar stocked as 1 year‐old parr (semi‐wild) with that of hatchery‐reared Atlantic salmon stocked as 2 year‐old smolts and wild smolts of Atlantic salmon in the northern Baltic Sea were compared. This was done through tagging experiments carried out in 1986–1988 and 1992. The recapture rate of the semi‐wild groups varied from 1·0 to 13·1%, being similar in 3 tagging years and lower in 1 year than that of the wild groups (1·7–17·0%). The recapture rate of the semi‐wild groups was similar (in 2 years) or higher (in 2 years) than that of the hatchery‐reared groups stocked as smolts (1·3–6·3%). The survival of semi‐wild smolts during the sea migration was as high as that of wild Atlantic salmon of an equal size and two to three times higher than hatchery‐reared Atlantic salmon stocked as smolts. The survival rate was positively associated with smolt size. The suitability of hatchery‐reared parr and smolts in the management of reduced Atlantic salmon stocks is compared.  相似文献   

8.
Eight hatchery‐reared Atlantic salmon Salmo salar post‐smolts, implanted with acoustic depth sensing transmitters and manually tracked for 5–12 h in the Hardangerfjord (Norway), spent most of their time (49–99%) at 1–3 m depth during the day, whereas four of seven fish tracked were found close (<0·5 m) to the surface at night, with a strong negative cross‐correlation between general swimming depth and surface light intensity. Hence, the actual swimming depth of post‐smolts during their early marine migration may depend on the light conditions, although the individual variation in vertical movement pattern was large. No cross‐correlations were found between light intensity and swimming depth during daytime periods with rapid changes in light intensity, indicating that other factors than light intensity were important in initiating the irregular dives that were recorded down to 6·5 m depth.  相似文献   

9.
Gale  W. L.  Hill  M. S.  & Zydlewski  G. B. 《Journal of fish biology》2004,65(S1):328-329
In many parts of the world release of hatchery‐reared smolts has long been used to mitigate for the deleterious effects of habitat loss and overfishing on salmonid populations. Of increasing concern is whether this may cause harm by spreading non‐native stocks and potentially releasing incompetent smolts. The objective of this study was to determine if smolt physiology and behavior of juveniles produced from a recently founded native broodstock differ from their wild (naturally‐reared) counterparts. In the fall of 2002 and 2003 juvenile wild steelhead were captured, PIT tagged, and returned ( n  = 1360 in 2002 and n  = 2708 in 2003) to Abernathy Creek. In winter of 2003 and 2004 hatchery‐reared fish were PIT tagged and later released ( n  = 1100 in 2003 and n  = 1400 in 2004) into Abernathy Creek. Gill biopsies were collected from wild and hatchery fish throughout the rearing and out‐migration season. The timing and speed of outmigration was assessed using two stationary PIT tag antennas (92–97% efficient). Hatchery migrants in 2003 were larger, had significantly lower gill Na+, K+‐ATPase activities, and migrated slower than wild fish. Results from the 2004 migratory season will also be presented. This study shows that hatchery rearing can result in smolts which are physiologically and behaviourally different from genetically similar wild fish. Whether these differences are critical enough to affect the rate of adult returns will be determined in future years.  相似文献   

10.
11.
Dietary analyses of Atlantic salmon Salmo salar post-smolt stomachs collected from 2001 to 2005 in Penobscot Bay, Maine, U.S.A., have yielded insights into the feeding ecology of early marine phase post-smolts from different rearing origins. Most stomachs contained only one or two prey types, suggesting active prey selection. Post-smolts that lived in the river longer (i.e. from naturally reared and parr-stocked origins) were smaller and consumed more fishes than invertebrates compared to larger post-smolts that emigrated immediately post-stocking (i.e. from smolt-stocked origins). Naturally reared S. salar consumed c. 84% fishes and 16% crustaceans and parr-stocked S. salar consumed 64% fishes and 34% crustaceans. Stocked smolts consumed 48% fishes and 40% crustaceans. Differences in the type and quantity of consumed prey may be indicative of behavioural differences among rearing origins that influence post-smolt survival.  相似文献   

12.
Between 1984 and 1990 a total 221 Carlin tags used to mark salmon Salmo salar smolts in the River North Esk, NE Scotland, were recovered from the stomachs of goosanders Mergus merganser and red-breasted mergansers M. serrator . Both Carlin-tagging and adipose-clipping affected the predation of salmon smolts by sawbill ducks. The mean (± S.D.) sizes of tagged smolts taken by both species were similar (117 ± 3 mm) and significantly smaller than the mean sizes of smolts in the river, possibly due to a reduction in the swimming performance of small smolts bearing tags. Large adipose-clipped smolts (±mean smolt size) were predated significantly more than unclipped smolts, but no such difference was observed for small smolts (相似文献   

13.
The possibility of Gyrodactylus salaris infection of wild North Atlantic salmon Salmo salar spreading to new rivers poses a major threat in Norway. This freshwater parasite can survive for some time in brackish water, and it has been suggested that smolts leaving infected rivers could transport vital parasites to new rivers. A Monte Carlo simulation model was used to estimate the risk that infected smolts would ascend a new river. Data from an infected watercourse in Norway, where the salmon population is maintained constant by cultivation, were used. The model included information on prevalence of infection, hydrographical conditions, survival of G. salaris in brackish water, fish population characteristics, and smolt behaviour during seaward migration. The annual risk was estimated for 3 neighbouring rivers situated at different distances from the index river. For the nearest river, which shares the same brackish water zone with the index river, the model estimated an annual risk of 31% that at least 1 infected smolt would ascend this river. The results of the simulation were highly sensitive to the water salinity along the migration route. For the other rivers, the annual risk was lower than 0.5%. Risk was positively correlated with the number of fish leaving the index river, indicating control of this number as a possible tool in risk management.  相似文献   

14.
In the Simojoki River in the northern Gulf of Bothnia, reared salmon stocked as smolts produced considerable numbers of ascending one‐sea‐winter (1 SW) males, whereas the proportion of male 1 SW salmon was low among spawning migrants of wild or reared parr origin. The sex ratio among ascending wild fish and reared salmon stocked as parr was similar, with females predominating, while reared salmon stocked as smolts were mainly males. The multi‐sea‐winter (MSW) salmon entered the river annually within a fairly short time period from the beginning of the migration season, independent of their sex or origin. 1 SW males migrated into the river significantly later in the season than MSW males. The results indicate that the delayed opening of the fishing season in the Gulf of Bothnia is effective in reducing the harvest of MSW salmon at sea. However, as the timing of the ascent may vary by several weeks from year to year, the effect of this regulation bound to certain calendar days may also vary considerably from year to year.  相似文献   

15.
Periodicity in Atlantic salmon Salmo salar L. smolt migration   总被引:1,自引:0,他引:1  
Behavioural and physiological mechanisms postulated for the control of downstream migration of Atlantic salmon smolts are reviewed briefly, and some new evidence is presented for their refusal to undergo sustained swimming. Although these mechanisms imply passive displacement as the primary means of emigration, it is likely that active components must also exist as the rates of travel of smolts through loch systems are only slightly slower than those recorded for river systems. The timing of these movements within 24 h periods is reviewed and it is shown that the predominantly nocturnal emigration pattern is evident on occasions in alevin, fry and parr stages also. Thus at migration the diel periodicity probably represents a seasonal locomotor rhythm which, under changed behavioural and physiological circumstances, results in downstream displacement.  相似文献   

16.
  1. Atlantic salmon (Salmo salar) smolts are often stocked into rivers to supplement natural reproduction, yet hatchery-reared fish have lower survival compared to wild conspecifics. However, few studies have assessed riverine migratory performance and survival differences in hatchery and wild smolts, or more specifically naturally reared smolts (hatchery fish released earlier as parr), particularly in rivers with weirs which may further reduce survival.
  2. Using acoustic telemetry, including a subset of fish with novel transmitters that identify predation events, we assessed survival and migration patterns of hatchery- (2017: n = 32; 2018: n = 30) and naturally reared Atlantic salmon smolts (2017: n = 8; 2018: n = 30) in a Lake Ontario tributary with two weirs to better understand their ecology and assess the influence of environmental parameters on migration.
  3. Naturally reared smolts were 13.9 times more likely to survive than hatchery-reared smolts and mark–recapture models indicated that weirs did not reduce survival for either group. Survival per km was lowest at the release site, indicating pre-migration mortality, and specifically high stocking-related mortality of hatchery-reared smolts. Speed and times of day fish migrated (i.e. migratory performance) did not vary by rearing group, suggesting that the high mortality of hatchery-reared smolts may be due to other factors related to hatchery and stocking operations. Overall mean (± SD) migration speed for smolts was 0.70 ± 0.39 km/hr and movements occurred significantly more frequently at night (18:00–06:00).
  4. Smolts were detected in Lake Ontario after they left the river; however, the array in Lake Ontario was not conducive to providing much detail regarding movement patterns. There was no predation of the two predation tags detected in Lake Ontario, indicating that movements were made by smolts and not predators.
  5. With ongoing restoration efforts of Atlantic salmon in Lake Ontario, it was important to understand the smolt migration patterns and success of the stocked fish. Our findings of similar migratory performance yet different relative survival of hatchery- and naturally reared smolts help inform management with regards to stocking strategies that could improve Atlantic salmon reintroduction success.
  相似文献   

17.
The lifetime success and performance characteristics of communally reared offspring of wild native Burrishoole (native), ranched native (ranched) and non‐native (non‐native) Atlantic salmon Salmo salar from the adjacent Owenmore River were compared. Non‐native 0+ year parr showed a substantial downstream migration, which was not shown by native and ranched parr. This appears to have been an active migration rather than competitive displacement and may reflect an adaptation to environmental or physiographic conditions within the Owenmore River catchment where the main nursery habitat is downstream of the spawning area. There were no differences between native and ranched in smolt output or adult return. Both of these measures, however, were significantly lower for the non‐native group. A greater proportion of the non‐native Atlantic salmon was taken in the coastal drift nets compared to the return to the Burrishoole system, probably as a result of the greater size of the non‐native fish. The overall lifetime success of the non‐native group, from fertilized egg to returning adult, was some 35% of native and ranched. The ranched group showed a significantly greater male parr maturity, a greater proportion of 1+ year smolts, and differences in sex ratio and timing of freshwater entry of returning adults compared to native, which may have fitness implications under specific conditions.  相似文献   

18.
The dispersal and migration of farmed Atlantic salmon, Salmo salar , allowed to escape during the summer was studied. Three groups of 4–year–old fish of the River Imsa stock were released in coastal waters off south-western Norway: one group, with functional olfactory organs, was released at a fish farm 4 km away from the R. Imsa; two other groups, one with transected olfactory nerves and the other with functional olfactory organs, were released in the sea 90 km from the R. Imsa. To compare them with the migration pattern of reared, large smolts of the Imsa stock, a group of 3 + smolts was released in the R. Imsa.
Adults of salmon released as 3–year–old smolts homed with high precision to the R. Imsa. Four– year–olds released in the sea were recaptured in the fjord and in the coastal current, the majority north of the places of release. Immatures migrated to feeding areas in the North Atlantic. Matures seemed to enter rivers at random when ready to spawn. There was no difference in migration pattern between anosmics and controls. The olfactory sense was not mandatory for entering fresh water. The results indicate that the homing behaviour of Atlantic salmon is not a direct consequence of a single imprinting of the smolts, and that there is not a direct genetic link for return to a particular river. The present results support the sequential imprinting hypothesis proposed by Harden Jones (1968).  相似文献   

19.
This study investigated the development of hypo‐osmoregulatory capacity and timing of downstream migration in wild Atlantic salmon Salmo salar smolts from the River Stjørdalselva and stocked young‐of‐the‐year (YOY), derived S. salar smolts from the tributary River Dalåa. Both wild and stocked S. salar smolts developed seawater (SW) tolerance in early May, persisting through June, measured as their ability to regulate plasma osmolality and chloride following 24 h SW (salinity = 35) exposure. Although the majority of downstream migration among the stocked S. salar smolts occurred later than observed in their wild counterparts, the development of SW tolerance occurred concurrently. The wild S. salar from Stjørdalselva and stocked YOY smolts from the River Dalåa started to migrate on the same cumulative day‐degrees (D°). The study revealed no downstream migration before development of SW tolerance. This emphasizes the importance of incorporating physiological status when studying environmental triggers for downstream migration of S. salar smolts. Overall, these findings suggest that the onset of smolt migration in stocked S. salar smolts was within the smolt window from an osmoregulatory point of view.  相似文献   

20.
The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due to both natural and human influences. Factors affecting mortality during the smolt and post-smolt stages contribute to determine the abundance of spawner returns. With many S. salar populations in decline, increased mortality at these stages may considerably contribute to limit S. salar production, and the consequences of human-induced mortality at this stage may be severe. Development of management actions to increase survival and fitness at the smolt and post-smolt stages is crucial to re-establish or conserve wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号