首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Galleria mellonella, the pupal-adult transformation of epidermal cells is initiated at day 1 after pupal ecdysis by downregulation of pupal syntheses and loss of juvenile hormone (JH) sensitivity, indicating the change from pupal to adult commitment. To trace regulatory events as close as possible to the early steps of this process, we have analyzed, by differential display, changes in epidermal mRNA populations during the first day after pupal ecdysis in normal development as well as after JH injection. We isolated and cloned 20 cDNA 3'-fragments that are differentially expressed with regard to their developmental profile either in normal development or after injection of JH. Four clones could be verified by Northern blot hybridization.Screening of corresponding cDNA libraries with digoxigenin-labeled anti-sense mRNA probes yielded two full-length cDNA clones (9/27 and 23/86). Both of them represent genes that could be involved in the regulatory events during initiation of pupal metamorphosis or in the action of JH, respectively. The 9/27 mRNA is inducible by JH. It contains, in the 3' untranslated region, a consensus sequence for deadenylation and specific degradation. The corresponding protein possesses two PKC phosphorylation sites and is with high probability a nuclear protein. The 23/86 clone represents polyubiquitin, differentially regulated in normal development and after JH application.  相似文献   

2.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

3.
The progress of developmental programme in the epidermal cells of last instar larvae of Bombyx mori was determined by ecdysteroid injections in normal and in JH-treated larvae. To clarify the importance of food intake in the control of development, starved animals were also used.The instar begins with a period during which the larval programme is expressed: this occurs in the presence of 20-hydroxyecdysone. Epidermal cells can thereafter secrete pupal cuticle after ecdysteroid injection although the larval programme is normally still present. During the last period only pupal characters can be expressed either in normal or in 20-hydroxyecdysone-injected larvae.These different developmental phases are not correlated with obligatory and facultative feeding periods.Transition from the first to the second phases is correlated with the absence of JH effects on pupal genes. JH applications during the second period, however, prevent the expression of pupal characters after 20-hydroxyecdysone injection. Thus, during this period, the pupal programme is not stabilized. Cellular reprogramming itself occurs at the onset of the last developmental period and is probably under the control of ecdysteroids.  相似文献   

4.
Previous studies have shown that the larval epidermis of the tobacco hornworm, Manduca sexta, contains a 29 kDa nuclear protein (JP29) that binds pothoaffinity analogs of juvenile hormone (JH), but does not bind JH I with high affinity. We now find that JP29 is also associated with the insecticyanin granules, and we show that JP29 mRNA is regulated in a complex fashion by both 20-hydroxyecdysone (20E) and JH. Studies with day 2 fourth instar larval epidermis in vitro showed that a molting concentration 12 μg/ml) of 20E caused the disappearance of JP29 mRNA, irrespective of the presence or absence of JH; this effect was dependent on the concentration of 20E (ED50=200 ng/ml). The reappearance of JP29 mRNA around the time of ecdysis required the presence of JH at head capsule slippage (HCS), since little appeared in larvae allatectomized about 6 h before HCS unless JH I was applied at the time of HCS. Maintenance of JP29 mRNA in fifth instar epidermis also required the continued presence of JH in both isolated abdomens and in vitro. Culture of either day 1 or day 2 fifth instar epidermis without hormones for 24 h caused decline of JP29 mRNA, which was accelerated by 20E in a concentration-dependent manner (ED50 = 30 and 10 ng/ml 20E respectively). When day 2 epidermis was exposed to 500 ng/ml 20E for 24 h to cause pupal commitment, JP29 mRNA disappeared. Neither methoprene nor JH I (in either the presence or the absence of the esterase inhibitor O-ethyl, S-phenyl phosphamidethiolate [EPPAT]) was able to prevent this loss, although both slowed its rate. The mRNA for the larval cuticle protein LCP14 was found to be regulated similarly to that for JP29 by 20E, but differently by JH. The JP29 protein was relatively long-live, persisting after the disappearance of its mRNA for at least 19 h during the larval molt and for more than 24 h in vitro. Although trace amounts of JP29 are found for the first 12 h after pupal ecdysis, injection of 5 μg JH II into pupae during the critical period to cause the synthesis of a second pupal cuticle had no effect on the amount of JP29 present. Thus, although the presence of JP29 in larval epidermis is associated with and dependent on JH, high amounts are not associated with the “status quo” action of JH on the pupa. The role of this protein consequently remains obscure. Arch. Insect Biochem. Physiol. 34:409–428, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.  相似文献   

6.
Morphogenetic effect of juvenile hormone (JH) and its analogues, dodecyl methyl ether, ethyl trimethyl dodecadienoate and methylenedioxyphenoxy-6-epoxy-3-ethyl-7-methyl-2-nonene, on carefully timed Tenebrio pupae was determined. These results show that the response of pupal epidermal cells to JH varied with age during the first 48 hr after larval-pupal ecdysis. The pupae showed low morphogenetic response soon after pupal ecdysis but their response increased gradually until 18 hr. The response to JH decreased in pupae older than about 32 hr; and 48 hr old pupae were unresponsive to low doses of JH employed in this study. Age-related differences in the pattern of response of the individual body regions to JH were also observed.The synergistic effect of 1 μg of ecdysterone with these JH compounds was also tested in relation to the age of Tenebrio pupa. The results show that the synergistic effect of ecdysterone was generally limited to >18 hr old pupae. This suggests that the physiological basis of the synergistic effect of ecdysterone may be the latter's ability to synchronize epidermal cells.The significance of these observations in the analysis of time of action of juvenile hormone is discussed.  相似文献   

7.
8.
The epidermal cell cycle of the pupal mesonotum of Galleria was investigated by the determination of mitotic indices, [3H]thymidine incorporation and flow-cytophotometric analysis during the first 48 h after pupation.Immediately after the pupal ecdysis nearly all epidermal cells are arrested in G2. Thereafter only a few mitoses occur, leading to a slow increase in the number of G1 nuclei. With the onset of a mitotic wave at a pupal age of 21 h this increase becomes more rapid. On day 2, the cell population reaches a plateau in the number of G1 (resp. G2) cells, reflecting a steady state between mitotic activity and DNA synthesis.A comparison of these cell cycle changes with known data of the time course of reprogramming and ecdysteroid titre leads to the conclusion that there is no causal relationship between DNA synthesis and cellular determination in the sense of a quantal cell cycle, and that DNA synthesis can precede the definite rise in ecdysteroid titre.  相似文献   

9.
10.
E75A and E75B, isoforms of the E75 orphan nuclear receptor, are sequentially up-regulated in the abdominal epidermis of the tobacco hornworm Manduca sexta by 20-hydroxyecdysone (20E) during larval and pupal molts, with E75A also increasing at pupal commitment (Zhou et al., Dev. Biol. 193, 127-138, 1998). We have now cloned E75C and show that little is expressed in the epidermis during larval life with trace amounts seen just before ecdysis. Instead, E75C is found in high amounts during the development of the adult wings as the ecdysteroid titer is rising, and this increase was prevented by juvenile hormone (JH) that prevented adult development. By contrast, E75D is expressed transiently during the larval and pupal molts as the ecdysteroid titer begins to decline and again just before ecdysis, but in the developing adult wings is expressed on the rise of 20E. Removal of the source of JH had little effect on either E75C or E75D mRNA expression during the larval and pupal molts. At the time of pupal commitment, in vitro experiments show that 20E up-regulates E75D and JH prevents this increase. Neither E75A nor E75D mRNA was up-regulated by JH alone. Thus, E75C is primarily involved in adult differentiation whereas E75D has roles both during the molt and pupal commitment.  相似文献   

11.
By means of the artificially induced heterochronic developmental deviations represented by local prothetelies and metathetelies it has been possible to investigate the individual developmental fates of ontogenetically different tissues, such as larval, pupal, and adult epidermal cells, in one and the same body and under the identical concentration of juvenile hormone (JH) in the haemolymph.In contrast to the widely accepted hormonal theories which claim that the kind of morphogenesis is determined by large, intermediate, and low titres of JH, the heterochronic character of the tissues never developed into a uniform population of homomorphic epidermal cells. Instead, in the presence of effective amounts of JH the heterochronic pattern has been fully preserved and carried on into the next developmental instar. Moreover, in the absence of the effective JH amounts the ontogenetically different tissues, such as larval and pupal epidermal cells, simultaneously undergo their respective morphogenetic developments, i.e. larval-pupal and pupal-adult morphogenesis in the same hormonal milieu. It is concluded that the selective factor in determination of the kind of morphogenetical changes is not an altered JH titre but the extant, previously attained degree of ontogenetic structural differentiation. It has been demonstrated that JH can temporarily and reversibly inhibit the morphogenetic progress at quite different ontogenetic levels but it cannot cause a ‘reversal of metamorphosis’ at any of these levels.Under specific experimental conditions the larval epidermal cells can undergo pupal and adult morphogenesis without secreting the pupal cuticle. However, the pupal morphogenetic interstage, whether with the cuticle or without the pupal cuticle, constitutes an obligatory developmental step. Further, it appears that an absence of JH may represent an important condition but not a real cause of insect metamorphosis, as presumed in some other hormonal concepts. Thus, chromosomal duplications or cellular divisions in the absence of JH have not committed the cells to morphogenesis unless provided by an additional stimulus of endogenous prothoracic gland hormone or exogenous ecdysterone. An important factor in understanding the hormonal control of insect morphogenesis is the critical timing of the respective morphogenetic steps. This corresponds closely with the duration of the pharate phases in insect development. Possible hormonal mechanisms concerned in the regulation of morphogenesis in endopterygote insects have been outlined.  相似文献   

12.
13.
Pupal commitment of the wing imaginal disc of the silkworm, Bombyx mori, is completed shortly after the final (fifth) larval ecdysis. Pupal commitment was induced by in vitro culture with 20-hydroxyecdysone (20E). Shortly after the head capsule slippage (HCS) that occurs approximately 24 h before the final larval ecdysis, the discs become competent to respond to 20E, indicating that the process of pupal commitment begins in the late penultimate (fourth) instar. The simultaneous presence of methoprene (JHA) with 20E suppressed the pupal commitment at 4 ng/ml for the discs at 12 h after HCS and at 240 ng/ml for the discs at the ecdysis. Thus, the discs rapidly lose their sensitivity to JH at the end of the fourth instar. Day 0 fourth wing discs were not pupally committed by 20E when freshly dissected discs were exposed to 20E. By contrast, exposure to 20E after a pre-culture in a hormone free medium induced the pupal commitment. In those discs, the effective JHA concentration to suppress the 20E effects was 0.1 ng/ml. The present data suggest that pupal commitment proceeds through two stages from a reversible state that begins at around HCS to an irreversible state early in the fifth instar. The loss of sensitivity to JH is the primary impetus to begin the process and 20E is the factor that drives the discs to enter the reversible state.  相似文献   

14.
The timing of pupal commitment of the forewing imaginal discs of the silkworm, Bombyx mori, was determined by a transplantation assay using fourth instar larvae. The wing discs were not pupally committed at the time of ecdysis to the fifth instar. Pupal commitment began shortly after the ecdysis and was completed in 14 h. When the discs of newly molted larvae (0-h discs) were cultured in medium containing no hormone, they were pupally committed in 26 h. In vitro exposure of 0-h discs to 20-hydroxyecdysone accelerated the progression of pupal commitment. Methoprene, a juvenile hormone analog (JHA), did not suppress the change in commitment in vitro at physiological concentrations. Thus the wing discs at the time of the molt have lost their sensitivity to JH, and 20E is not a prerequisite for completion of pupal commitment. These results suggest that the change in commitment in the forewing discs may begin before the last larval molt.  相似文献   

15.
《Insect Biochemistry》1985,15(4):489-502
When fat body mRNA from the tobacco hornworm larva, Manduca sexta, was translated in a rabbit reticulocyte lysate system, three major polypeptides were found, each having a different developmental profile. One mRNA coded for a 74 kilodalton (K) polypeptide doublet precipitated by an antibody to the arylphorin (manducin). This mRNA was present only during the intermolt feeding phase of the penultimate and the final larval instars. Its appearance 16–24 hr after larval ecdysis was dependent upon the incoming nutrient supply and independent of the juvenile hormone (JH) level. Immunoblots of proteins of the fat body, epidermis, and cuticle revealed the presence of arylphorin in all three tissues. Additionally, several small polypeptides that cross-reacted with the arylphorin antibody were found in the fat body during and up to 24 hr after the last larval molt and in the tanning pupal cuticle. The larval epidermis was also found to contain a small amount of arylphorin mRNA. At the time of the JH decline prior to the onset of metamorphosis, a female-specific mRNA coding for a 79 K translation product appeared. In allatectomized larvae this mRNA was detectable earlier, and its appearance in intact larvae was prevented by application of methoprene, indicating that JH regulates its appearance. At wandering a new mRNA that also codes for a 79 K polypeptide appeared in both sexes and was the major messenger present during the prepupal stage. Neither it nor the female-specific mRNA were translatable after pupal ecdysis.  相似文献   

16.
17.
At the initiation of metamorphosis when exposed to ecdysteroid in the absence of juvenile hormone (JH), the lepidopteran epidermis changes its commitment from one for larval differentiation to one for pupal differentiation. Changes in mRNA populations during this change both in vivo and in vitro were followed by a one-dimensional SDS-gel electrophoretic analysis of translation products made in a mRNA-dependent rabbit reticulocyte lysate system. The larval epidermal cell was found to lose its translatable mRNAs for larval cuticular proteins and the larval-specific pigment insecticyanin during the change in commitment; these never reappeared. For Class I cuticular proteins and for insecticyanin, this loss occurred during the exposure to ecdysteroid, each with a differing time course. By contrast, Class II cuticular mRNAs first increased during this time, then also disappeared by the time the cells were pupally committed. In vitro these mRNAs appeared in only trace amounts in response to 20-hydroxyecdysone (20-HE). The pupally committed cell (late in the wandering stage) contained mRNAs for three low-molecular-weight proteins which were precipitable with the pupal cuticular antiserum. The remainder of the pupal cuticular mRNAs were not translatable until the third day after wandering, a time when pupal cuticle is being deposited in response to a molting surge of ecdysteroid. The pupally committed cell also had at least one new noncuticular mRNA which coded for a 34K protein and which was absent from both larval and pupal epidermal cells making cuticle. Since its appearance in response to 20-HE in vitro is repressed by JH, it is called a pupal commitment-specific protein. Thus, during the change of commitment 20-HE inactivates larval-specific genes irreversibly in a sequential cascade of events. The activation of most pupal-specific genes then requires a subsequent exposure to more ecdysteroid.  相似文献   

18.
Hormonal Control of Epidermal Cell Development   总被引:2,自引:1,他引:1  
SYNOPSIS. During larval life the insect epidermis makes a larvalcuticle and certain pigments due to the presence of juvenilehormone (JH) at critical times during the molt cycle. The presenceof JH also permits growth of imaginal discs and maintains strictlylarval epidermis. At metamorphosis the lepidopteran epidermisresponds to a low level of 20- hydroxyecdysone (20HE) in theabsence of JH by becoming pupally committed, then later it formsa pupal cuticle when more 20HE appears, even though JH is present.During the change of commitment, DNA synthesis occurs but isnot essential, whereas both RN A and protein synthesis are.The major changes in the translatable mRNA population at thistime are threefold: a decline in most larval cuticle mRNAs,a transient increase followed by a disappearance of a few larvalcuticle mRNAs, and an appearance of at least one ‘pupalcommitment’ mRNA and two to three mRNAs for small pupalcuticular proteins. Similar changes are seen in the proteinsynthetic patterns. Thus, a pupally committed cell is one whichcan no longer make larval products but which is not yet ableto make most pupal products. Juvenile hormone prevents the changeto pupal commitment by directing some of both the primary andthe secondary actions of 20HE on the genome.  相似文献   

19.
The effects of juvenile hormone (JH) and 20-hydroxyecdysone (20E) on the developmental expression of the two insecticyanin genes, ins-a and ins-b, were investigated with two gene-specific probes. Removal of the corpora allata (-CA, source of JH) clearly delayed and down-regulated the epidermal expression of these genes but enhanced their expression in the fat body during the early development of the fifth instar. Application of JH I to the -CA larvae at the time of head capsule slippage completely restored the normal epidermal expression pattern of the two genes in the early fifth instar, then INS-a mRNA declined prematurely whereas INS-b mRNA remained similar to that in the intact larvae. By contrast, in the fat body of -CA larvae, the exogenous JH had little effect on the levels of INS-a mRNA, but enhanced expression of INS-b mRNA relative to intact larvae. Culture of epidermis from day 1 fifth instar larvae with 40 ng/ml 20E for up to 24 h accelerated the loss of INS-a mRNA without affecting the levels of INS-b mRNA. Both mRNAs declined in isolated larval abdomens over a 24 h period, and this decline was slowed by 1 g methoprene (a JH analog). Together these results indicate that JH controls the levels of the two mRNAs in both the epidermis and fat body, with additional factors involved in regulating these genes in the fat body during the molt and in the epidermis during the growth phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号