首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-half of all cases of Wilms tumor (WT), a childhood kidney tumor, show loss of heterozygosity at chromosomal band 11p13 loci, suggesting that mutation of one allele and subsequent mutation or loss of the homologous allele are important events in the development of these tumors. The previously reported nonrandom loss of maternal alleles in these tumors implied that the primary mutation occurred on the paternally derived chromosome and that it was "unmasked" by loss of the normal maternal allele. This, in turn, suggests that the paternally derived allele is more mutable than the maternal one. To investigate whether germinal mutations are seen with equal frequency in maternally versus paternally inherited chromosomes, we determined the parental origin of the de novo germinal 11p13 deletions in eight children by typing lymphocyte DNA from these children and from their parents for 11p13 RFLPs. In seven of the eight cases, the de novo deletion was of paternal origin. The one case of maternal origin was unremarkable in terms of the size or extent of the 11p13 deletion, and the child did develop WT. Transmission of 11p13 deletions by both maternal and paternal carriers of balanced translocations has been reported, although maternal inheritance predominates. These data, in addition to the general preponderance of paternally derived, de novo mutations at other loci, suggest that the increased frequency of paternal deletions we observed is due to an increased germinal mutation rate in males.  相似文献   

2.
Unequal meiotic crossover: a frequent cause of NF1 microdeletions   总被引:7,自引:0,他引:7       下载免费PDF全文
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called "NF1-REPs." The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs.  相似文献   

3.
Parental origin of the extra chromosome in Down's syndrome   总被引:13,自引:1,他引:12  
Summary Chromosome 21 fluorescent heteromorphisms were studied in 42 patients with Down's syndrome, their parents and their siblings. Included in this number are two instances of an aunt and niece affected with trisomy 21, and one of affected siblings. One case has a de novo 21/21 translocation. Blood group, red cell and serum protein markers were also studied for linkage, gene exclusions, associations, and paternity testing. Thirty-one of the trisomy 21 cases were informative for parental origin of the extra chromosome and for stage of meiosis. The non-disjunctional event was of maternal origin in 24; 23 occurred in meiosis I, 1 in meiosis II. Seven were of paternal origin; 5 in meiosis I, and 2 in meiosis II. The translocation case was of paternal origin. A literature search revealed a total of 98 cases informative for the parent of origin of the extra chromosome, of >347 families tested. In addition, 3 de novo translocation cases, of 7 tested, were informative. The data suggest that most cases result from an error in the first meiotic division in the mother, but that a significant proportion are paternal in origin.  相似文献   

4.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

5.
Chromosome 15 is frequently involved in the formation of structural rearrangements. We report the molecular characterisation of 16 independent interstitial duplications, including those of one individual who carried a duplication on both of her chromosomes 15, and three interstitial triplications of the Prader-Willi/Angelman syndrome critical region (PWACR). In all probands except one, the rearrangement was maternal in origin. In one family, the duplication was paternal in origin, yet appeared to segregate in a sibship of three with an abnormal phenotype that included developmental delay and a behavioural disorder. Ten duplications were familial, five de novo and one unknown. All 16 duplications, including two not visible by routine G-banding, were of an almost uniform size and shared the common deletion breakpoints of Prader-Willi syndrome and Angelman syndrome. Like deletions, the formation of duplications can occur in both male and female meiosis and involve both inter- and intrachromosomal events. This implies that at least some deletions and duplications are the reciprocal products of each other. We observed no instances of meiotic instability in the transmission of a duplication, although recombination within the PWACR occurred in two members of the same family between the normal and the duplicated chromosome 15 homologues. All three triplications arose de novo and included alleles from both maternal chromosomes 15. Triplication breakpoints were more variable and extended distally beyond the PWACR. The molecular characteristics of duplications and triplications suggest that they are formed by different mechanisms.  相似文献   

6.
Summary Two cases of 47,XXX males were studied, one of which has been published previously (Bigozzi et al. 1980). Analysis of X-linked restriction fragment length polymorphisms revealed that in this case, one X chromosome was of paternal and two were of maternal origin, whereas in the other case, two X chromosomes were of paternal and one of maternal origin. Southern blot analysis with Y-specific DNA probes demonstrated the presence of Y short arm sequences in both XXX males. In one case, the results obtained pointed to a paracentric inversion on Yp of the patient's father. In situ hybridization indicated that the Y-specific DNA sequences were localized on Xp22.3 in one of the three X chromosomes in both cases. The presence of Y DNA had no effect on random X inactivation. It is concluded that both XXX males originate from aberrant X-Y interchange during paternal meiosis, with coincident nondisjunction of the X chromosome during maternal meiosis in case 1, and during paternal meiosis II in case 2.  相似文献   

7.
Down syndrome is rarely due to a de novo duplication of chromosome 21 [dup(21q)]. To investigate the origin of the dup(21q) and the nature of this chromosome, we used DNA polymorphisms in 10 families with Down syndrome due to de novo dup(21q). The origin of the extra chromosome 21q was maternal in six cases and paternal in four cases. Furthermore, the majority (eight of 10) of dup(21q) chromosomes were isochromosomes i(21q) (four were paternal in origin, and four were maternal in origin); however, in two of 10 families the dup(21q) chromosome appeared to be the result of a Robertsonian translocation t(21q;21q) (maternal in origin in both cases).  相似文献   

8.
9.
Reciprocal chromosome translocations are common de novo rearrangements that occur randomly throughout the human genome. To learn about causative mechanisms, we have cloned and sequenced the breakpoints of a cytologically balanced constitutional reciprocal translocation, t(X;4)(p21.2;q31.22), present in a girl with Duchenne muscular dystrophy (DMD). Physical mapping of the derivative chromosomes, after their separation in somatic cell hybrids, reveals that the translocation disrupts the DMD gene in Xp21 within the 18-kb intron 16. Restriction mapping and sequencing of clones that span both translocation breakpoints as well as the corresponding normal regions indicate the loss of approximately 5 kb in the formation of the derivative X chromosome, with 4-6 bp deleted from chromosome 4. RFLP and Southern analyses indicate that the de novo translocation is a paternal origin and that the father's X chromosome contains the DNA that is deleted in the derivative X. Most likely, deletion and translation arose simultaneously from a complex rearrangement event that involves three chromosomal breakpoints. Short regions of sequence homology were present at the three sites. A 5-bp sequence, GGAAT, found exactly at the translocation breakpoints on both normal chromosomes X and 4, has been preserved only on the der(4) chromosome. It is likely that the X-derived sequence GGAATCA has been lost in the formation of the der(X) chromosome, as it matches an inverted GAATCA sequence present on the opposite strand exactly at the other end of the deleted 5-kb fragment. These findings suggest a possible mechanism which may have juxtaposed the three sites and mediated sequence-specific breakage and recombination between nonhomologous chromosomes in male meiosis.  相似文献   

10.
11.
Segregation analysis of polymorphic sites within the retinoblastoma (RB) gene and on chromosome 13, as well as the parental origin of the lost allele in the tumor, were analyzed in 24 families with RB patients. Four mutant alleles transmitted through the germ-line and seven de novo germ-line mutant alleles were identified in 11 patients with hereditary RB. Segregation analysis within the RB gene and on chromosome 13 was useful for DNA diagnosis of susceptibility to RB in relatives of hereditary patients, even if mutations were not identified. All seven de novo germ-line mutant alleles were paternally derived. The bias toward the paternal allele for de novo germ-line mutations of the RB gene was statistically significant. Seven paternal alleles and six maternal alleles were lost in 13 non-hereditary RB tumors with no bias in the parental origin of the somatic allele loss. These results suggest that the physical environment or a deficiency in DNA repair during spermatogenesis may be associated with significant risk factors for de novo germ-line mutations.  相似文献   

12.
Molecular characterization of de novo secondary trisomy 13.   总被引:12,自引:6,他引:6       下载免费PDF全文
Unbalanced Robertsonian translocations are a significant cause of mental retardation and fetal wastage. The majority of homologous rearrangements of chromosome 21 in Down syndrome have been shown to be isochromosomes. Aside from chromosome 21, very little is known about other acrocentric homologous rearrangements. In this study, four cases of de novo secondary trisomy 13 are presented. FISH using alpha-satellite sequences, rDNA, and a pTRI-6 satellite I sequence specific to the short arm of chromosome 13 showed all four rearrangements to be dicentric and apparently devoid of ribosomal genes. Three of four rearrangements retained the pTRI-6 satellite I sequence. Case 1 was the exception, showing a deletion of this sequence in the rearrangement, although both parental chromosomes 13 had strong positive hybridization signals. Eleven microsatellite markers from chromosome 13 were also used to characterize the rearrangements. Of the four possible outcomes, one maternal Robertsonian translocation, two paternal isochromosomes, and one maternal isochromosome were observed. A double recombination was observed in the maternally derived rob(13q13q). No recombination events were detected in any isochromosome. The parental origins and molecular chromosomal structure of these cases are compared with previous studies of de novo acrocentric rearrangements.  相似文献   

13.
Summary Five live-born infants with Patau syndrome were studied for the nondisjunctional origin of the extra chromosome. Transmission modes of chromosomes 13 from parents to a child were determined using both QFQ- and RFA-heteromorphims as markers, and the origin was ascertained in all of the patients. The extra chromosome had originated in nondisjunction at the maternal first meiotic division in two patients, at the maternal second meiosis in other two, and at the paternal first meiosis in the remaining one.Summarizing the results of the present study, together with those of the previous studies on a liveborn and abortuses with trisomy 13, nondisjunction at the maternal and the paternal meiosis occurred in this trisomy in the ratio of 14:3. This ratio is not statistically different from that inferred from the previous studies for Down syndrome. These findings suggest that there may be a fundamental mechanism common to the occurrence of nondisjunction in the acrocentric trisomies.  相似文献   

14.
Down syndrome is rarely due to a de novo Robertsonian translocation t(14q;21q). DNA polymorphisms in eight families with Down syndrome due to de novo t(14q;21q) demonstrated maternal origin of the extra chromosome 21q in all cases. In seven nonmosaic cases the DNA markers showed crossing-over between two maternal chromosomes 21, and in one mosaic case no crossing-over was observed (this case was probably due to an early postzygotic nondisjunction). In the majority of cases (five of six informative families) the proximal marker D21S120 was reduced to homozygosity in the offspring with trisomy 21. The data can be best explained by chromatid translocation in meiosis I and by normal crossover and segregation in meiosis I and meiosis II.  相似文献   

15.
Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg–sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg–sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg–sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.  相似文献   

16.
During meiosis, two rounds of chromosome segregation occur after a single round of DNA replication, producing haploid progeny from diploid progenitors. Three innovations in chromosome behaviour during meiosis I accomplish this unique division. First, crossovers between maternal and paternal sister chromatids (detected cytologically as chiasmata) bind replicated maternal and paternal chromosomes together. Second, sister kinetochores attach to microtubules from the same pole (mono-polar orientation), causing maternal and paternal centromere pairs (and not sister chromatids) to be separated. Third, sister chromatid cohesion near centromeres is preserved at anaphase I when cohesion along chromosome arms is destroyed. The finding that destruction of mitotic cohesion is regulated by Polo-like kinases prompted us to investigate the meiotic role of the yeast Polo-like kinase Cdc5. We show here that cells lacking Cdc5 synapse homologues and initiate recombination normally, but fail to efficiently resolve recombination intermediates as crossovers. They also fail to properly localize the Lrs4 (ref. 3) and Mam1 (ref. 4) monopolin proteins, resulting in bipolar orientation of sister kinetochores. Cdc5 is thus required both for the formation of chiasmata and for cosegregation of sister centromeres at meiosis I.  相似文献   

17.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

18.
We investigated the parent and cell division of origin of the extra chromosome 18 in 62 aneuploids with a free trisomy 18 by using chromosome-18-specific pericentromeric short-sequence repeats. In 46 cases, DNA of patients was recovered from archival specimens, such as paraffin-embedded tissues and fixed chromosomal spreads. In 56 families, the supernumerary chromosome was maternal in origin; in six families, it was paternal. Among the 56 maternally derived aneuploids, we could exclude a postzygotic mitotic error in 52 cases. Among those in which the nondisjunction was attributable to an error at meiosis, 11 were the result of a meiosis I nondisjunction and 17 were caused by a meiosis II error. This result differs markedly from findings in acrocentric chromosomes where nondisjunction at maternal meiosis I predominates. Among the six paternally derived cases, two originated from a meiotic error, indicating that a nondisjunction in paternal meiosis is not as rare as previously suggested.Dedicated to Professor Dr. W. Gottschalk on the occasion of his 75th birthday  相似文献   

19.
A case with de novo interstitial deletion of chromosome 7q21.1-q22: A patient with multiple congenital anomalies was found to have a de novo proximal interstitial deletion of chromosome 7q21.1-q22. The patient was 10.5 years of age, and manifestations include growth retardation (below 3rd percentile), mental retardation, mild microcephaly, hypersensitivity to noise, mild spasticity, short palpebral fissures, alternant exotropia, compensated hypermetropic astigmatism, hypotelorism, hypoplastic labia majora and minora, clinodactyly of fingers 4 and 5. Molecular studies revealed that the deletion had a paternal origin, while chromosomes of both parents cytogenetically were shown to be normal. Molecular, and fluorescence in situ hybridization (FISH) analyses confirmed no deletion at the Williams-Beuren Syndrome region. Some of the heterogeneous clinical findings were consistent with previously reported cases of same chromosomal breakpoints.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号