首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis.  相似文献   

3.
为了探讨候选肝癌抑癌蛋白PIG11(p53-induced gene 11,PIG11)诱导细胞凋亡的机制,首次在HepG2细胞株中鉴定了11个PIG11结合蛋白,热休克蛋白60(heat shock protein 60,Hsp60)为其中之一.采用免疫共沉淀联合Western blot 技术对Hsp60进行了验证.用Western blot检测其蛋白质表达,结果显示:pLXSN-PIG11-HepG2细胞中Hsp60蛋白表达较pLXSN-HepG2、HepG2细胞组下调(n=3,P < 0.01).选取与Hsp60关系密切的Bax蛋白进行研究,Western blot结果显示PIG11高表达可引起胞浆Bax向线粒体转位.以上结果表明,PIG11蛋白能与HepG2细胞中的Hsp60结合,促进Hsp60-Bax的分离,引起Bax从胞液到线粒体转位,激活线粒体凋亡途径,这可能是其诱导HepG2细胞凋亡的主要机制之一.  相似文献   

4.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

5.
The proteins Bcl-2 and Bcl-X(L) prevent apoptosis, but their mechanism of action is unclear. We examined the role of Bcl-2 and Bcl-X(L) in the regulation of cytosolic Ca(2+), nitric oxide production (NO), c-Jun NH(2)-terminal kinase (JNK) activation, and apoptosis in Jurkat T cells. Thapsigargin (TG), an inhibitor of the endoplasmic reticulum-associated Ca(2+) ATPase, was used to disrupt Ca(2+) homeostasis. TG acutely elevated intracellular free Ca(2+) and mitochondrial Ca(2+) levels and induced NO production and apoptosis in Jurkat cells transfected with vector (JT/Neo). Buffering of this Ca(2+) response with 1, 2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM) or inhibiting NO synthase activity with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME) blocked TG-induced NO production and apoptosis in JT/Neo cells. By contrast, while TG produced comparable early changes in the Ca(2+) level (i.e., within 3 h) in Jurkat cells overexpressing Bcl-2 and Bcl-X(L) (JT/Bcl-2 or JT/Bcl-X(L)), NO production, late (36-h) Ca(2+) accumulation, and apoptosis were dramatically reduced compared to those in JT/Neo cells. Exposure of JT/Bcl-2 and JT/Bcl-X(L) cells to the NO donor, S-nitroso-N-acetylpenacillamine (SNAP) resulted in apoptosis comparable to that seen in JT/Neo cells. TG also activated the JNK pathway, which was blocked by L-NAME. Transient expression of a dominant negative mutant SEK1 (Lys-->Arg), an upstream kinase of JNK, prevented both TG-induced JNK activation and apoptosis. A dominant negative c-Jun mutant also reduced TG-induced apoptosis. Overexpression of Bcl-2 or Bcl-X(L) inhibited TG-induced loss in mitochondrial membrane potential, release of cytochrome c, and activation of caspase-3 and JNK. Inhibition of caspase-3 activation blocked TG-induced JNK activation, suggesting that JNK activation occurred downstream of caspase-3. Thus, TG-induced Ca(2+) release leads to NO generation followed by mitochondrial changes including cytochrome c release and caspase-3 activation. Caspase-3 activation leads to activation of the JNK pathway and apoptosis. In summary, Ca(2+)-dependent activation of NO production mediates apoptosis after TG exposure in JT/Neo cells. JT/Bcl-2 and JT/Bcl-X(L) cells are susceptible to NO-mediated apoptosis, but Bcl-2 and Bcl-X(L) protect the cells against TG-induced apoptosis by negatively regulating Ca(2+)-sensitive NO synthase activity or expression.  相似文献   

6.
AMP-activated protein kinase influences cellular metabolism, glucose-regulated gene expression, and insulin secretion of pancreatic beta cells. Its sustained activation by culture at low glucose concentrations or in the presence of 5-aminoimidazole-4-carboxamide riboside (AICAR) was shown to trigger apoptosis in beta cells. This study shows that both low glucose- and AICAR-induced apoptosis are associated with increased formation of mitochondrial superoxide-derived radicals and decreased mitochondrial activity. Mitochondrial dysfunction was reflected by an increased oxidized state of the mitochondrial flavins (FMN/FAD) but not of NAD(P)H. It was accompanied by suppression of glucose oxidation and glucose-induced insulin secretion, while palmitate oxidation appeared unaffected. When the cellular accumulation of superoxide-derived radicals was quenched by the ROS scavengers vitamin E, N-acetylcysteine, or the SOD-mimetic compound MnTBAP, apoptosis was significantly inhibited. Both low glucose and AICAR also elevated the expression of BH3-domain-only Bcl-2 antagonists, and induced caspase-3 activation, causing caspase-dependent truncation of Bcl-2. Overexpression of recombinant human Bcl-2 prevented caspase-3 activation, endogenous Bcl-2 processing, and apoptosis, but did not attenuate oxygen radical formation, AMPK activation, or JNK phosphorylation. We conclude that apoptosis by prolonged AMPK activation in beta cells results from enhanced production of mitochondria-derived oxygen radicals and onset of the intrinsic mitochondrial apoptosis pathway, followed by caspase activation and Bcl-2 cleavage which may amplify the death signal.  相似文献   

7.
SNX-2112 is a heat shock protein 90 (Hsp90) inhibitor with anticancer properties currently in clinical trials. This study investigated the effects of SNX-2112 on inhibition of cell growth, the cell cycle, and apoptosis in MCF-7 human breast cancer cells, in addition to the various molecular mechanisms. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis suggest that SNX-2112 inhibits cell growth in a time- and dose-dependent manner more potently than 17-(allylamino)-17-demethoxygeldanmycin (17-AAG), a traditional Hsp90 inhibitor, probably as a result of cell-cycle arrest at the G2/M phase and the induction of apoptosis. Downregulation of Bcl-2 and Bcl-xL, upregulation of Bax, cleavage of caspase-9 and poly (ADP-ribose) polymerase (PARP), and degradation of the breast cancer-related Hsp90 client proteins human epidermal growth factor receptor-2 (HER2), Akt, Raf-1, and nuclear factor kappa-B kinase (IKK) were observed in SNX-2112 treated cells by Western blot assay. These findings suggest that the molecular mechanisms of cell-growth inhibition by SNX-2112 involve activation of the mitochondrial apoptotic pathway and the degradation of breast cancer-related proteins.  相似文献   

8.
SNX-2112 is a heat shock protein 90 (Hsp90) inhibitor with anticancer properties currently in clinical trials. This study investigated the effects of SNX-2112 on inhibition of cell growth, the cell cycle, and apoptosis in MCF-7 human breast cancer cells, in addition to the various molecular mechanisms. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis suggest that SNX-2112 inhibits cell growth in a time- and dose-dependent manner more potently than 17-(allylamino)-17-demethoxygeldanmycin (17-AAG), a traditional Hsp90 inhibitor, probably as a result of cell-cycle arrest at the G2/M phase and the induction of apoptosis. Downregulation of Bcl-2 and Bcl-xL, upregulation of Bax, cleavage of caspase-9 and poly (ADP-ribose) polymerase (PARP), and degradation of the breast cancer-related Hsp90 client proteins human epidermal growth factor receptor-2 (HER2), Akt, Raf-1, and nuclear factor kappa-B kinase (IKK) were observed in SNX-2112 treated cells by Western blot assay. These findings suggest that the molecular mechanisms of cell-growth inhibition by SNX-2112 involve activation of the mitochondrial apoptotic pathway and the degradation of breast cancer-related proteins.  相似文献   

9.
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻性黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

10.
Smoking is the leading risk factor of chronic obstructive pulmonary disease (COPD) and lung cancer. Corticosteroids are abundantly used in these patients; however, the interaction of smoking and steroid treatment is not fully understood. Heat shock proteins (Hsps) play a central role in the maintenance of cell integrity, apoptosis and cellular steroid action. To better understand cigarette smoke-steroid interaction, we examined the effect of cigarette smoke extract (CSE) and/or dexamethasone (DEX) on changes of intracellular heat shock protein-72 (Hsp72) in lung cells. Alveolar epithelial cells (A549) were exposed to increasing doses (0; 0.1; 1; and 10 μM/μl) of DEX in the medium in the absence(C) and presence of CSE. Apoptosis, necrosis, Hsp72 messenger-ribonucleic acid (mRNA) and protein expression of cells were measured, and the role of Hsp72 on steroid effect examined. CSE reduced the number of viable cells by significantly increasing the number of apoptotic and necrotic cells. DEX dose-dependently decreased the ratio of apoptosis when CSE was administered, without change in necrosis. CSE − DEX co-treatment dose-dependently increased Hsp72 mRNA and protein expression, with the highest level measured in CSE + DEX (10) cells, while significantly lower levels were noted in all respective C groups. Pretreatment with Hsp72 silencing RNA confirmed that increased survival observed following DEX administration in CSE-treated cells was mainly mediated via the Hsp72 system. CSE significantly decreases cell survival by inducing apoptosis and necrosis. DEX significantly increases Hsp72 mRNA and protein expression only in the presence of CSE resulting in increased cellular protection and survival. DEX exerts its cell protective effects by decreasing apoptotic cell death via the Hsp72 system in CSE-treated alveolar epithelial cells.  相似文献   

11.
Neuronal Apoptosis: BH3-Only Proteins the Real Killers?   总被引:2,自引:0,他引:2  
At present there is a poor understanding of the events that lead up to neuronal apoptosis that occurs in neurodegenerative diseases and following acute ischemic episodes. Apoptosis is critical for the elimination of unwanted neurons within the developing nervous system. The Bcl-2 family of proteins contains pro- and anti-apoptotic proteins that regulate the mitochondrial pathway of apoptosis. There is increasing interest in a subfamily of the Bcl-2 family, the BH3-only proteins, and their pro-apoptotic effects within neurons. Recently ischemic and seizure-induced neuronal injury has been shown to result in the activation of the BH3-only protein, Bid. This protein is cleaved and the truncated protein (tBid) translocates to the mitochondria. The translocation of tBid to the mitochondria is associated with the activation of outer mitochondrial membrane proteins Bax/Bak and the release of cytochrome C from the mitochondria. ER stress also has been implicated as a factor for the induction of apoptosis in ischemic neuronal injury. The induction of ER stress in hippocampal neurons has been shown to activate expression of bb3/PUMA, a member of the BH3-only gene family. Activation of PUMA is associated with the activation and clustering of the pro-apoptotic Bcl-2 family member Bax and the loss of cytochrome C from the mitochondria.  相似文献   

12.
Enhanced cell survival and resistance to apoptosis during thermotolerance correlates with an increased expression of heat shock proteins (Hsps). Here we present additional evidence in support of the hypothesis that the induction of Hsp27 and Hsp72 during acquired thermotolerance in Jurkat T-lymphocytes prevents apoptosis. In thermotolerant cells, Hsp27 was shown to associate with the mitochondrial fraction, and inhibition of Hsp27 induction during thermotolerance in cells transfected with hsp27 antisense potentiated mitochondrial cytochrome c release after exposure to various apoptotic stimuli, despite the presence of elevated levels of Hsp72. Caspase activation and apoptosis were inhibited under these conditions. In vitro studies revealed that recombinant Hsp72 more efficiently blocked cytochrome c-mediated caspase activation than did recombinant Hsp27. A model is presented for the inhibition of apoptosis during thermotolerance in which Hsp27 preferentially blocks mitochondrial cytochrome c release, whereas Hsp72 interferes with apoptosomal caspase activation.  相似文献   

13.
14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cancer cells. Hsp90 is known to be involved in cell survival and growth in tumor cells. Nevertheless, Hsp90 inhibitors exhibit a variable effect on the cytotoxicity of anticancer drugs. Furthermore, the combined effect of Hsp90 inhibitors on TRAIL-induced apoptosis in epithelial ovarian cancer cells has not been determined. To assess the ability of an inhibitor of Hsp90 inhibitor radicicol to promote apoptosis, we investigated the effect of radicicol on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced a decrease in Bid, Bcl-2, Bcl-xL, and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1 and an increase in the tumor suppressor p53 levels. Radicicol enhanced TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that radicicol may potentiate the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Radicicol may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.  相似文献   

15.
Dental follicle stem cells (DFSCs) have been considered as promising candidate cells for periodontal tissue regeneration. Understanding the signalling pathways underlying the apoptosis of DFSCs will facilitate its biomedical application. Here we showed that Notch1 signalling could inhibit DFSCs apoptosis because the constitutive overexpression of the intracellular domain of Notch1 (ICN1) promoted proliferation and suppressed apoptosis by inhibiting cytoplasmic mitochondrial membrane depolarization, cytochrome c release and activation of caspase-9 and caspase-3. The survival-promoting effect of Notch1 was also accomplished by up-regulation of the anti-apoptotic proteins Bcl-2 and Mcl-1, down-regulation of the pro-apoptotic proteins Bax and Bad, and blockade of Bax multimerization. Moreover, p-Akt (S473) was significantly increased after ectopic Notch 1 activation. The expression of p53 was also inhibited in Notch1-overexpressing DFSCs, while the ectopic expression of p53 promoted apoptosis even when Notch1 was overexpressed. Meanwhile, all of the opposite phenomena were observed in Notch1 shRNA-silenced DFSCs. Our data strongly suggested that Notch1 signalling inhibited the apoptosis of DFSCs via the cytoplasmic mitochondrial pathway and ICN-Akt signalling pathway, together with nuclear gene expression regulation. These findings would provide molecular cues for the further medical application of DFSCs.  相似文献   

16.
The localization and control of Bcl-2 proteins on mitochondria is essential for the intrinsic pathway of apoptosis. Anti-apoptotic Bcl-2 proteins reside on the outer mitochondrial membrane (OMM) and prevent apoptosis by inhibiting the activation of the pro-apoptotic family members Bax and Bak. The Bcl-2 subfamily of BH3-only proteins can either inhibit the anti-apoptotic proteins or directly activate Bax or Bak. How these proteins interact with each other, the mitochondrial surface and within the OMM are complex processes we are only beginning to understand. However, these interactions are fundamental for the transduction of apoptotic signals to mitochondria and the subsequent release of caspase activating factors into the cytosol. In this review we will discuss our knowledge of how Bcl-2 proteins are directed to mitochondria in the first place, a crucial but poorly understood aspect of their regulation. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

17.
Heat shock protein 72 (Hsp72) inhibits apoptosis induced by some stresses that trigger the intrinsic apoptosis pathway. However, with the exception of TNFalpha-induced apoptosis, a role for Hsp72 in modulating the extrinsic pathway of apoptosis has not been clearly established. In this study, it was demonstrated that Hsp72 could inhibit Fas-mediated apoptosis of type II CCRF-CEM cells, but not type I SW480 or CH1 cells. Similar results were obtained when Fas ligand or an agonistic Fas antibody initiated the Fas apoptosis pathway. In CCRF-CEM cells, Hsp72 inhibited mitochondrial membrane depolarization and cytochrome c release but did not alter surface Fas expression or processing of caspase-8 and Bid, indicating that Hsp72 acts upstream of the mitochondria to inhibit Fas-mediated apoptosis. Thus, the ability of Hsp72 to inhibit Fas-mediated apoptosis is limited to type II cells where involvement of the intrinsic pathway is required for efficient effector caspase activation.  相似文献   

18.
The localization and control of Bcl-2 proteins on mitochondria is essential for the intrinsic pathway of apoptosis. Anti-apoptotic Bcl-2 proteins reside on the outer mitochondrial membrane (OMM) and prevent apoptosis by inhibiting the activation of the pro-apoptotic family members Bax and Bak. The Bcl-2 subfamily of BH3-only proteins can either inhibit the anti-apoptotic proteins or directly activate Bax or Bak. How these proteins interact with each other, the mitochondrial surface and within the OMM are complex processes we are only beginning to understand. However, these interactions are fundamental for the transduction of apoptotic signals to mitochondria and the subsequent release of caspase activating factors into the cytosol. In this review we will discuss our knowledge of how Bcl-2 proteins are directed to mitochondria in the first place, a crucial but poorly understood aspect of their regulation. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

19.
张蕾  于锋 《生物磁学》2014,(3):586-589
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻陛黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

20.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号