首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue slices from three brain regions of the rat and cat were incubated in a medium containing L-DOPA and nialamide, and studied by the formaldehyde-fluorescence method. Unlike the rat brain capillary walls, which showed a marked increase in fluorescence due to uptake of L-DOPA and subsequent dopamine formation and accumulation, the capillary walls of the cat brain samples did not show evidence of dopamine accumulation.The nature of a blood-brain barrier to L-DOPA in man is discussed with regard to this finding.  相似文献   

2.
Summary Changes are reported in (a) the fluorescence intensity of specific formaldehydeinduced fluorescence derived from monoamines, and (b) autofluorescence, during storage of tissue sections of the caudate nucleus and cerebral cortex of the rat brain. Storage as ribbons over 13 weeks was accompanied by a marked increase in autofluorescence, while storage as ribbons for 3 days after sectioning was associated with a marked increase in the specific formaldehyde-induced fluorescence of the striatal neuropil, which was prevented by mounting the sections in Entellan.  相似文献   

3.
The effects of L-DOPA administration in various doses (250,500 and 1000 mg/kg for 7 days) upon type A and B MAO activities in rat tissues have been investigated using the substrates 5-HT, tyramine and benzylamine. The specific activities of MAO in heart, kidney and brain were significantly increased after L-DOPA, whereas liver and vas deferens MAO was unchanged. None of the observed changes was totally specific for either form of the enzyme, although some evidence for a slight selectivity on type A MAO of heart and type B MAO of kidney and brain was obtained. These results indicate that some tissues may respond to elevated intracellular catecholamine levels, resulting from L-DOPA administration, by increasing their capacity to deaminate those amines. However, at present, the exact mechanism by which these changes are brought about is unknown.  相似文献   

4.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

5.
We have investigated the effects of low (10 mg/kg) and high (100 mg/kg) doses of L-DOPA on the expression and activity of neuronal nitric oxide synthase (nNOS) and guanylyl cyclase (GC) in the striatum and midbrain of mice. L-DOPA was administered subchronically for 11 days (beginning 3 days after last MPTP/NaCl injection) or for 14 days (with dosing started immediately following the last MPTP/NaCl injection). Adult mice received three intraperitoneal (i.p.) injections of physiological saline or MPTP at 2h intervals (total dose of 40 mg/kg). Normal and MPTP-injected mice were treated twice a day for 11 or 14 days with low (10/2.5 mg/kg bw) or high (100/25mg/kg bw) doses of L-DOPA/benserazide. The present study indicates that several days of treatment with L-DOPA does not affect MPTP-activation of the nNOS/sGC/cGMP pathway or the neurodegenerative processes that occur in the striatum and midbrain of mice. In normal mice, L-DOPA upregulates the expression and activity of nNOS and GC to levels found in MPTP-injected mice. Due to upregulation of nNOS and GC, cGMP levels in the mouse striatum and midbrain are also elevated, however, significantly lower in mice administrated with low dose of L-DOPA. In both investigated brain regions of normal mice cGMP-dependent PDEs activities were elevated after low dose administration of L-DOPA, but no change in PDEs activities has been detected in MPTP and high L-DOPA-injected mice as compared to control values. The enhancement of nNOS mRNA and GCbeta1 mRNA levels were generated by both doses of L-DOPA, given in a time-dependent fashion. L-DOPA-injected for 11 or 14 days caused a decrease in TH protein levels in the striatum and midbrain, respectively; this result was noted irrespective of dose. L-DOPA therapy did not prevent the MPTP-induced decrease in TH protein levels in either investigated brain region.  相似文献   

6.
Neurological injury and Parkinson disease (PD) are often associated with the increase of nitric oxide (NO) and free radicals from resident glial cells in the brain. In vitro, exposure to L-3-4-dihydroxyphenylalanine (L-DOPA), one of the main therapeutic agents for the treatment of PD, can lead to neurotoxicity. In this study, lipopolysaccharide (LPS) and interferon-gamma (IFN-g) were used to stimulate C6 glioma cells in the presence of varying concentrations of L-DOPA (1 microM-1 mM). The results indicated a slight augmentation of NO(2)(-) production at low concentrations of L-DOPA (<100 microM) and complete inhibition of NO(2)(-) at higher concentrations (500 microM, 1 mM), (p < 0.001). Western blot analysis corroborated that L-DOPA effects on iNOS was at the level of its protein expression. Total reactive oxygen species (ROS) were detected using 2', 7'-dichlorofluorescein diacetate fluorescence dye (2', 7'-DCFC) and there was an increase of intensity with the increasing concentrations of L-DOPA. Furthermore, large amounts of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were generated from the autoxidation of L-DOPA. C6 cells contain high levels of catalase, with inadequate levels of superoxide dismutase (SOD); therefore, there was an accumulation of O(2)(-), tantamount to elevation in 2'7'-DCFC intensity. Simultaneous accumulation of O(2)(-) and NO(2)(-) would propel formation of peroxynitrite (ONOO-). SOD completely attenuated the autoxidation of L-DOPA and significantly reversed the inhibitory effects on iNOS at high concentrations. The data obtained confirmed that the observed effects on iNOS were not due to the activation of the D(1) or beta1 adrenergic receptors by L-DOPA. It was concluded from this study that L-DOPA contributed to the modulation of iNOS and to the increase of O(2)(-) production in the stimulated glioma cells in vitro.  相似文献   

7.
HISTOCHEMISTRY OF RAT BRAIN STEM MONOAMINE OXIDASE DURING MATURATION   总被引:1,自引:0,他引:1  
—Monoamine oxidase (MAO) activity in the nuclei and tracts of the medulla and pons of the rat from birth to 90 days is reported. Prominent MAO activity was present in the locus coeruleus and nucleus ambiguus at birth. At 5 days a weak reaction localized mainly within the neuropil and glia cells was detected in several other nuclei. By 10 days all nuclei were identified with MAO activity varying from weak to intense, the activity showing further increases at 15 and 20 days. Staining in nerve fibres was negligible at 5 days but increased rapidly to 15 days in some tracts when the characteristic beading pattern was distinct. At 30 days differentiation in intensity of MAO activity between the nuclei diminished and no increase was apparent after 55 days. The results are compared with the distribution of brain stem acetylcholinesterase during maturation and also with regions specific in catecholamine or serotonin content in the adult rat brain stem. This and an earlier study on the cerebrum suggest that MAO is another component of the brain that falls into the caudal-rostral concept of biochemical maturation and that it fits into a group of enzymes exhibiting a similar pattern of increase in activity during development.  相似文献   

8.
Abstract— Cat brain was frozen in situ with liquid nitrogen. In order to locate areas with ischemic artifact, frozen brain slices were surveyed for regions of increased NADH fluorescence. In addition, levels of ATP, phosphocreatine, lactate, and NADH were determined in various brain regions. High levels of ATP and phosphocreatine, and low levels of lactate and NADH were present in all brain regions except the depths of some cortical sulci. These regions of ischemic change were easily detected by virtue of increased NADH fluorescence in frozen brain slices. Deep brain structures such as basal ganglia and hippocampus showed neither high tissue fluorescence nor ischemic changes of the metabolites measured. Therefore, in situ freezing of cat brain adequately preserves metabolite levels in most regions.  相似文献   

9.
The target size of neurotoxic esterase (NTE), the putative target site for the initiation of organophosphorus-compound-induced delayed neurotoxicity, and acetylcholinesterase (AChE) from hen brain were examined by determining the rate at which the activities of the esterases were destroyed by ionizing irradiation. Samples of hen brain were prepared by slowly drying a microsomal preparation under vacuum. The dried samples were then irradiated with electrons from a 1 MeV Van de Graaff generator. The doses ranged from 0 to 28 Mrad. The radiation doses were calibrated by the rate of inactivation of T1-bacteriophage plaque induction. Following the irradiation procedure, the samples were resuspended in buffer and enzymic activity was measured. The target size of NTE from hen brain was determined to be about 105 kDa, whereas hen brain AChE was found to have a target size of about 53 kDa. The target size of NTE was found to be similar in experiments with rat brain and cat brain. In addition, commercial preparations of electric-eel electric-organ AChE and horse serum butyrylcholinesterase were found to have target sizes that were identical with each other, and also were very similar to that of AChE from hen brain.  相似文献   

10.
Parkinson's disease is a neurodegenerative disorder which is mainly characterized by degeneration of the dopaminergic cells in the nigro-striatal system. Due to a lowered L-tyrosine 3-monooxygenase activity, L-tyrosine is not sufficiently transformed to L-DOPA. To date the most common therapy is the administration of the dopamine precursor L-DOPA, with severe collateral effects. Therefore, the substitution of the lacking tyrosine hydroxylase with tyrosinase might be a novel therapeutical approach that would generate specifically L-DOPA from L-tyrosine. We present here evidence that stereotaxic injection of liposome-entrapped tyrosinase is able to significatively increase the levels of dopamine in the rat brain. The catecholamines L-DOPA, dopamine, L-epinephrine, L-norepinephrine were extracted by acid treatment from the brains and detected by HPLC.  相似文献   

11.
Classical antipsychotic drugs, such as haloperidol, have been shown to increase the concentrations of neurotensin (NT) selectively in the nucleus accumbens and caudate nucleus of the rat. Several novel, putative antipsychotic drugs have also been found to produce increases in NT content in one or both of these brain regions. The present study sought to compare the effects of chronic treatment with three clinically efficacious atypical antipsychotic drugs, sulpiride, rimcazole and remoxipride, on regional brain NT concentrations to those of haloperidol. The concentrations of NT in five discrete brain regions were determined by a sensitive and specific radioimmunoassay. As previously reported, haloperidol increased NT concentrations in both the nucleus accumbens and caudate nucleus. Sulpiride and rimcazole produced significant increases in the concentration of NT in the caudate. NT concentrations were unaltered in any brain region by remoxipride at either of the doses tested. These data provide additional evidence for specific increases in regional brain NT concentrations produced by antipsychotic drugs.  相似文献   

12.
The effcts of short and long term lithium treatment on tryptophan uptake and on tissue levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were studied in twelve brain regions of the cat. Tryptophan uptake and 5-HIAA were significantly correlated in control cats. Short term treatment caused parallel increases or decreases in tryptophan uptake and 5-HIAA. Long term treatment consistently increased tryptophan uptake without corresponding changes in 5-HIAA. Relatively low cumulative doses of lithium may reduce the degree to which tryptophan uptake is a limiting factor in the the regulation of serotonin synthesis.  相似文献   

13.
Immunohistochemistry for osteocalcin (OC) and osteopontin (OPN) was performed to know their distributions in the hind brain of adult rats. OC- and OPN-immunoreactivity (-ir) were detected in neuronal cell bodies, including perikarya and proximal dendrites and the neuropil. In the cranial nerve motor nuclei, numerous OC- and OPN-immunoreactive (-ir) neurons were detected. The neuropil in the cranial motor nuclei mostly showed strong OC- and OPN-staining intensity. The cranial nerve sensory nuclei and other relay and modulating structures in the lower brain stem also contained various numbers of OC- and OPN-ir neurons. The staining intensities in the neuropil were varied among these regions. In the cerebellar cortex, Purkinje cells and granule cells showed OPN-ir but not OC-ir. However, OC- and OPN-ir neurons were abundantly distributed throughout the cerebellar nuclei. The neuropil in the cerebellar nuclei showed moderate OC-ir and strong OPN-ir staining intensities. These findings indicate that the distribution patterns of OC- and OPN-ir neurons were similar in many structures within the hind brain. OC may play a role in modulating neuroprotective function of OPN.  相似文献   

14.
Endogenously formed prostaglandins (PGs) D2, E2 and F2 alpha were determined in homogenates of brain regions from rat, guinea-pig, rabbit and cat, using gas-chromatography-mass spectrometry. The main PGs formed in the brain regions of the rat were PGD2, in the guinea-pig PGD2 and PGF2 alpha, in the rabbit PGF2 alpha and in the cat PGE2. Brain regions from the same animal species showed the same pattern of PG formation. They varied, however, in the amount of total PGs formed, the limbic system and the cerebral cortex being highest and cerebellum lowest.  相似文献   

15.
By means of the histochemical method intensity of monoamines fluorescence has been studied in 3-, 5-, 7-, 10-, 20-, 30- and 60-day-old intact and neonatally androgenized female rats. The neonatal androgenization increases fluorescent intensity of monoamines in the neuropil of the adjoining nucleus of the septum, of the nucleus in the terminal stripe bed and the caudate nucleus. This is especially evident on the 3d, 7th and 30th days. On the 5th day of the postnatal life the difference in fluorescent intensity of monoamines in the brain of control and test animals is statistically insignificant. Possible mechanisms responsible for the fluorescent intensity of monoamines and the role of the latter in transmitting the sex hormones effect to the neurons of the forebrain structures investigated are discussed.  相似文献   

16.
Rats were fed maximally tolerated doses of L-3,4-Dihydroxyphenylalanine (L-DOPA) and carbidopa daily for 120 days in order to achieve a sustained elevation in brain dopamine levels. Some animals were also given buthionine sulfoximine, a gamma-glutamylcysteine synthetase inhibitor, in an unsuccessful effort to reduce brain glutathione contents. L-DOPA- and carbidopa-treated animals displayed no behavioral changes suggestive of nigrostriatal dopaminergic neuronal loss. When sacrificed 60 days after L-DOPA treatment ended, all rats had normal tyrosine hydroxylase activities and dopamine contents in their striata, and cell counts were normal in the substantia nigra. It therefore seems unlikely that a model of Parkinson's disease, suitable for exploring the etiological importance of glutathione deficiency, can be produced in rats merely by administering the largest tolerable doses of L-DOPA.  相似文献   

17.
House PK  Vyas A  Sapolsky R 《PloS one》2011,6(8):e23277
Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.  相似文献   

18.
Intravenous L-DOPA caused a dose-dependent depletion of 5-HT in the lumbar region of rat spinal cord. Pretreatment with the peripheral decarboxylase inhibitor MK-486, significantly increased the 5-HT-depleting effect of acutely administered L-DOPA. Chronically administered L-DOPA (100 mg/kg per day for 3 days) had no effect on spinal 5-HT levels 24 hours after the last dose. It is concluded that the L-DOPA-mediated depletion of 5-HT from serotonergic terminals, already demonstrated to occur in the brain, also occurs in the spinal cord. This released 5-HT could be involved in mediating some of the observed physiological effects of L-DOPA in the spinal cord.  相似文献   

19.
Summary Ultrastructural characteristics of fetal rat brain cell aggregates in a three-dimensional stationary culture system are described. Transmission electron microscopy showed immature cells which developed into mature astrocytes, oligodendrocytes, and neurons during 20 d in culture. This was accompanied by the development of a neuropil where myelinated axons and synaptic complexes were observed. In addition to confirming earlier ultrastructural investigations on fetal rat brain cell aggregates, the stationary culture system also showed the presence of histiotypic regions within the aggregates. These regions consisted of ependymal cells where cilia were observed on the cell surfaces. Structures resembling subependymal basement membrane labyrinths were also observed. Macrophages seemed to be more numerous in the stationary cultures as compared to other culture systems. The stationary culture system may provide aggregates that are ultrastructurally more complex than those obtained by rotation mediated systems. This investigation was supported by The Norwegian Cancer Society.  相似文献   

20.
We hypothesized that one of the functions of REM sleep is to maintain brain excitability and therefore, REM sleep deprivation is likely to modulate neuronal transmembrane potential; however, so far there was no direct evidence to support the claim. In this study a cationic dye, 3,3'-diethylthiacarbocyanine iodide was used to estimate the potential in synaptosomal samples prepared from control and REM sleep deprived rat brains. The activity of Na-K-ATPase that maintains the transmembrane potential was also estimated in the same sample. Further, the roles of noradrenaline and alpha1-adrenoceptor in mediating the responses were studied both in vivo as well as in vitro. Rats were REM sleep deprived for 4 days by the classical flower-pot method; large platform and recovery controls were carried out in addition to free-moving control. The fluorescence intensity increased in samples prepared from REM sleep deprived rat brain as compared to control, which reflected synaptosomal depolarization after deprivation. The Na-K-ATPase activity also increased in the same deprived sample. Furthermore, both the effects were mediated by noradrenaline acting on alpha1-adrenoceptors in the brain. This is the first direct evidence showing that REM sleep deprivation indeed increased neuronal depolarization, which is the likely cause for increased brain excitability, thus supporting our hypothesis and the effect was mediated by noradrenaline acting through the alpha1-adrenoceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号