首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. RNA was isolated from rat liver at selected times after the intraperitoneal injection of either [14C]methyl methanesulphonate (50mg/kg) or [14C]dimethylnitrosamine (2mg/kg). These doses were chosen to minimize effects due to toxicity. 2. Two methods of extraction and purification of RNA were used and an analysis of the radioactivity present was made by column chromatography of acid hydrolysates of the purified RNA. 3. The extent of methylation of guanine, the principal site of alkylation in rat liver RNA, was determined at times up to 14 days after injection. Although dimethylnitrosamine is a potent liver carcinogen and methyl methanesulphonate is not carcinogenic to rat liver, the rate of disappearance of 7-methylguanine from RNA was similar for both compounds, with a half-life of about 3.5 days. 4. An estimate of the biological half-life of rRNA was made by using [3H]orotic acid. A half-life of 5 days was obtained and this was not affected by injecting animals with unlabelled methyl methanesulphonate at the same dosage of 50mg/kg used in the studies of RNA methylation. 5. After administration of labelled orotic acid, reutilization of labelled RNA degradation products probably results in an overestimation of the biological half-life for rRNA. It is suggested that non-toxic doses of methylating agents such as methyl methanesulphonate and dimethylnitrosamine may prove to be a more effective way of accurately estimating the biological turnover of RNA species.  相似文献   

2.
1. The incorporation of methyl groups into histones from dimethylnitrosamine and from methionine was studied by injection of the labelled compounds, isolation of rat liver and kidney histones, and analysis of hydrolysates by column chromatography. 2. Labelled methionine gave rise to labelled in-N-methyl-lysine, di-in-N-methyl-lysine and an amino acid presumed to be omega-N-methyl-arginine. 3. Administration of labelled dimethylnitrosamine gave rise to labelled S-methylcysteine, 1-methylhistidine, 3-methylhistidine and in-N-methyl-lysine derived from the alkylating metabolite of dimethylnitrosamine. In addition, labelled formaldehyde released by metabolism of dimethylnitrosamine leads to the formation of labelled S-adenosylmethionine, and hence to labelling of in-N-methyl-lysine, di-in-N-methyl-lysine and omega-N-methylarginine by enzymic methylation. 4. The formation of in-N-methyl-lysine by alkylation of liver histones was confirmed by using doubly labelled dimethylnitrosamine to discriminate between direct chemical alkylation and enzymic methylation via S-adenosylmethionine. These experiments also suggested the possibility that methionine residues in the histones were alkylated to give methylmethionine sulphonium residues. 5. The extent of alkylation of liver histones was maximal at about 5h after dosing and declined between 5 and 24h. The methylated amino acids resulting from direct chemical alkylation were preferentially lost: this is ascribed to necrosis of the more highly alkylated cells. 6. Liver histones were about four times as alkylated as kidney histones; the extent of alkylation of liver histones was similar to that of liver total nuclear proteins. 7. Methyl methanesulphonate (120mg/kg) alkylated liver histones to a greater extent than did dimethylnitrosamine. Diethylnitrosamine also alkylated liver histones. 8. The results are discussed with regard to the possible effects of alkylation on histone function, and the possible role of histone alkylation in carcinogenesis by the three compounds.  相似文献   

3.
A single treatment with dimethylnitrosamine (DMN) but not with methyl methanesulphonate (MMS) induces liver cell carcinoma if given during the period of restorative hyperplasia following partial hepatectomy, a higher incidence of tumours being induced if the carcinogen is given during the period of DNA synthesis (24 h after the operation) than if given early in the prereplicative stage (at 6 h). To study the effect of treatment with DMN and with MMS on the regenerating liver, DNA replication was measured in vivo in partially hepatectomised animals treated with the methylating agents, and DNA polymerase activity was assayed in vitro.  相似文献   

4.
Preparations of covalently closed mitochondrial DNA of rat liver contain 10-30% of molecules that are converted into relaxed circular molecules after treatment with ribonuclease. Control experiments, with covalently closed bacteriophage PM2 DNA, indicate that ribonuclease-sensitivity cannot be induced either by depurination or by incubation with reducing agents.  相似文献   

5.
1. Methods were developed for analysis of alkylpurines, O2-alkylcytosines, and representative phosphotriesters [alkyl derivatives of thymidylyl(3'-5')thymidine], in DNA alkylated in vivo, using high-pressure liquid chromatography. 2. The patterns of alkylation products in DNA in vivo at short times were closely similar to those found for reactions in vitro. Alkylation by the nitrosoureas was complete in vivo within 1 h, but with ethyl methanesulphonate was maximal at 2--4h. 3. The time course of persistence of alkylation products in vivo was determined for several tissues. In addition to the rapid loss of 3- and 7-alkyladenines reported previously for all tissues, a relatively rapid loss of O6-alkylguanines from DNA of liver was found which was more rapid at lower doses. In brain, lung and kidney, excision of O6-alkylguanine was much less marked, but was not entirely excluded by the data. In thymus, bone marrow and small bowel, all alkylated bases were lost with half-lives of 12--24h, at non-cytotoxic doses of alkylation. 4. No evidence for any marked excision of other minor products from alkylated DNA in vivo was found; thus 1-methyladenine, O2-ethylcytosine (found in appreciable amount only with N-ethyl-N-nitrosourea), 3-methylguanine, and dTp(Alk)dT persisted in alkylated DNA, including DNA of liver. 5. The induction of thymic lymphoma was determined over the range of single doses by intraperitoneal injection up to about 60% of the LD50 values, and related to the extent of alkylation of target tissues thymus and bone marrow. With N-methyl-N-nitrosourea over 90% tumour yield was attained at 60 mg/kg, and with N-ethyl-N-nitrosourea up to 52% at 240 mg/kg, but with ethyl methanesulphonate at up to 400 mg/kg only a few per cent of tumours were obtained. 6. The carcinogenic effectiveness of the agents was positively correlated with the extents of alkylation of guanine in DNA of target tissues at the O-6 atom. On the basis that at doses giving equal carcinogenic response these extents of alkylation would be equal, the chemical analyses showed that the ratio of equipotent doses to that for N-methyl-N-nitrosourea would be, for N-ethyl-N-nitrosourea, 5.3 for ethyl methanesulphonate about 21, and for methyl methanesulphonate [Frei & Lawley (1976) Chem.-Biol. Interact. 13, 215--222] about 144. These predictions were in reasonably good agreement with the observed dose-response data for these agents.  相似文献   

6.
A method of preparation of mitochondria free of nuclear DNA and its fragments by treatment of mitochondria with DEAE-cellulose has been developed. This method is based on binding nuclear nucleic acids and nucleoproteins to DEAE-cellulose particles in the media used for isolation of mitochondria. Treatment with DEAE-cellulose under the conditions described does not induce any visible degradation of mitochondria and mitochondrial DNA. The mitochondrial DNA preparations obtained from beef and rat liver are represented with closed circular molecules of contour length about 5.5 mu. The 5-methylcytosine content in beef and rat mitochondrial DNA (3.03 and 2.0 mole %, respectively) is twice as much as in corresponding nuclear DNA. Besides, mitochondrial DNA strongly differs from nuclear ones by a lower degree of pyrimidine clustering: the amount of mono- and dipyrimidine fragments (about 32 mole %) in mitochondrial DNA is 1.5 times as large and the content of long pyrimidine clusters (hexa- and others) is 2--4 times as low as those in nuclear DNA. The methylation level and the pyrimidine clustering degree may be used as criteria for the purity of mitochondrial DNA from nuclear DNA.  相似文献   

7.
1. N[(14)C]-Methyl-N-nitrosourea, [(14)C]dimethylnitrosamine, [(14)C]dimethyl sulphate and [(14)C]methyl methanesulphonate were injected into rats, and nucleic acids were isolated from several organs after various time-intervals. Radioactivity was detected in DNA and RNA, partly in major base components and partly as the methylated base, 7-methylguanine. 2. No 7-methylguanine was detected in liver DNA from normal untreated rats. 3. The specific radioactivity of 7-methylguanine isolated from DNA prepared from rats treated with [(14)C]dimethylnitrosamine was virtually the same as that of the dimethylnitrosamine injected. 4. The degree of methylation of RNA and DNA produced in various organs by each compound was determined, and expressed as a percentage of guanine residues converted into 7-methylguanine. With dimethylnitrosamine both nucleic acids were considerably more highly methylated in the liver (RNA, about 1% of guanine residues methylated; DNA, about 0.6% of guanine residues methylated) than in the other organs. Kidney nucleic acids were methylated to about one-tenth of the extent of those in the liver, lung showed slightly lower values and the other organs only very low values. N-Methyl-N-nitrosourea methylated nucleic acids to about the same extent in all the organs studied, the amount being about the same as that in the kidney after treatment with dimethylnitrosamine. In each case the RNA was more highly methylated than the DNA. Methyl methanesulphonate methylated the nucleic acids in several organs to about the same extent as N-methyl-N-nitrosourea, but the DNA was more highly methylated than the RNA. Dimethyl sulphate, even in toxic doses, gave considerably less methylation than N-methyl-N-nitrosourea in all the organs studied, the greatest methylation being in the brain. 5. The rate of removal of 7-methylguanine from DNA of kidneys from rats treated with dimethylnitrosamine was compared with the rate after treatment of rats with methyl methanesulphonate. No striking difference was found. 6. The results are discussed in connexion with the organ distribution of tumours induced by the compounds under study and in relation to the possible importance of alkylation of cellular components for the induction of cancer.  相似文献   

8.
A single injection of dimethylnitrosamine (DMN), 12.0-15.6 mg-kg, given to 100 g female rats 24 h after partial hepatectomy, induced hepatocellular carcinoma. No animals receiving DMN without partial hepatectomy developed liver carcinomas. Previous evidence had suggested that the incidence of tumours was highest when DMN was administered during the wave of DNA replication which follows partial hepatectomy. The present experiments made this suggestive evidence statistically significant. A single treatment with diethylnitrosamine (DEN) induced liver cell cancer when given to intact or to partially hepatectomised rats. No tumors developed when another alkylating carcinogen, methyl methanesulphonate (MMS), was administered after partial hepatectomy. The significance of these results in relation to the mechanism of initiation of carcinogenesis is discussed.  相似文献   

9.
Barley seeds were treated with methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), stored at 15% water content and washed for 16–24 h. These treatments resulted in an increase of toxic and genetic effects. In teh DNA of embryos of such stored MMS- and EMS-treated seeds, a strong enhancement of the amount of single-strand breaks and/or alkali-labile sites took place. In contrast, the amount of alkylated sites, particularly of 7-methylguanine, was somewhat lower. It can be that the depurination and/or backbone breakage, which proceeds during the storage period, is responsible for the enhancement of toxic and genetic effects, whereas the influence of the alkylation of DNA during the storage period by the unreacted residual mutagen is negligible.  相似文献   

10.
In Saccharomyces cerevisiae, methyl methanesulphonate and diepoxybutane produced efficiently lethal, as well as mutagenic, damage in nuclear DNA. However, in the same conditions, these agents did not induce cytoplasmic petite mutations and poorly induced point mutations (resistance to erythromycin and chloramphenicol) in mitochondrial DNA. Possible reasons for these differences are discussed.  相似文献   

11.
The reaction of the carcinogen N-methyl-N-nitrosourea with mitochondrial DNA from various rat tissues was examined in vivo and in vitro. After incubation of isolated mitochondria or cell nuclei with N[(14)C]-methyl-N-nitrosourea in vitro and subsequent isolation and purification of the DNA the specific radioactivity of the mitochondrial DNA was 3-7 times that of the nuclear DNA. The incorporation of (14)C into embryonic mitochondrial DNA in vitro was about twice that into the liver mitochondrial DNA. Identical incorporation rates, however, were found for the reaction of isolated mitochondrial DNA or nuclear DNA respectively with N[(14)C]-methyl-N-nitrosourea. After intraperitoneal injection of 43.3-58.5mg of N[(14)C]-methyl-N-nitrosourea/kg body wt. to adult rats the labelling of the mitochondrial DNA was on average 5 times that of the nuclear DNA. A smaller specific labelling was observed for the ribosomal RNA, transfer RNA, and mitochondrial RNA as well as for the mitochondrial protein as compared with the mitochondrial DNA. After hydrolysis of the alkylated nucleic acids with hydrochloric acid, fractionation was carried out on Dowex 50 cation-exchange columns. In most experiments 70-80% of the input (14)C radioactivity was eluted in the 7-methylguanine fraction. The preferential alkylation of the mitochondrial DNA by N-methyl-N-nitrosourea in situ is discussed in connexion with the cytoplasmic-mutation hypothesis of carcinogenesis.  相似文献   

12.
1. Groups of rats were given one dose of the carcinogen dimethylnitrosamine by gastric intubation. The dose was varied between 10mg/kg body wt. and 1 microgram/kg body wt. 2. The dose was rapidly absorbed. 3. The methylation of liver DNA resulting from the administration of this carcinogen was proportional to dose. This suggests that small doses are absorbed from the gut with no more loss than large doses. 4. As the dose was decreased there was a disproportionately greater decrease in the alkylation of kidney DNA, and when the dose was less than 40 microgram/kg body wt. the methylation of kidney DNA was no longer detectable. This possibly explains why small amounts of dimethylnitrosamine in the diet do not induce kidney tumours. 5. Comparison of the relative alkylation of liver DNA and kidney DNA resulting from an oral and from an intravenous dose of dimethylnitrosamine suggest that small amounts of dimethylnitrosamine absorbed into the portal blood from the gut are completely metabolized by the liver and do not enter the general circulation. 6. The implications of these results for the possible hazard of dimethylnitrosamine in human food is discussed.  相似文献   

13.
The vasodilator hydralazine was tested for induction of DNA-repair synthesis and stimulation of replicative DNA synthesis in rat hepatocytes after administration in vivo, either once or repetitively. No increase in unscheduled or replicative DNA synthesis was observed. By contrast, positive controls clearly induced DNA-repair synthesis, either after a single treatment (4-aminobiphenyl, dimethylnitrosamine and methyl methanesulphonate) or after repetitive treatment (benzo[a]pyrene), or stimulated replicative DNA synthesis (carbon tetrachloride and dimethylnitrosamine). Thus, hydralazine displayed no genotoxic and no tumour-promoting activity in these in vivo-in vitro test systems.  相似文献   

14.
In two clones ofTradescantia (4430 and 02) differing in the sensitivity to the mutagenic action of alkylating agents, equimolar doses of [14C] methyl methanesulphonate (MMS) elicited a similar degree of protein, RNA and DNA alkylation and a similar amount of DNA-7-methylguanine and DNA-3-methyladenine in cells of inflorescence. Moreover, in the same clones and tissues the same doses of nonlabelled MMS produced a similar amount of DNA single strand breaks and/or alkali labile sites as measured in alkaline sucrose gradients. None of the DNA lesions followed is therefore decisive for explanation of the different mutagenic sensitivity ofTradescantia clones.  相似文献   

15.
1. The amounts of 7-methylguanine and O6-methylguanine present in the DNA of liver and kidney of rats 4h and 24h after administration of low doses of dimethylnitrosamine were measured. 2. O6-Methylguanine was rapidly removed from liver DNA so that less than 15% of the expected amount (on the basis of 7-methylguanine found) was present within 4h after doses of 0.25mg/kg body wt. or less. Within 24h of administration of dimethylnitrosamine at doses of 1mg/kg or below, more than 85% of the expected amount of O6-methylguanine was removed. Removal was most efficient (defined in terms of the percentage of the O6-methylguanine formed that was subsequently lost within 24h) after doses of 0.25–0.5mg/kg body wt. At doses greater or less than this the removal was less efficient, even though the absolute amount of O6-methylguanine lost during 24h increased with the dose of dimethylnitrosamine over the entire range of doses from 0.001 to 20mg/kg body wt. 3. Alkylation of kidney DNA after intraperitoneal injections of 1–50μg of dimethylnitrosamine/kg body wt. occurred at about one-tenth the extent of alkylation of liver DNA. Removal of O6-methylguanine from the DNA also took place in the kidney, but was slower than in the liver. 4. After oral administration of these doses of dimethylnitrosamine, the alkylation of kidney DNA was much less than after intraperitoneal administration and represented only 1–2% of that found in the liver. 5. Alkylation of liver and kidney DNA was readily detectable when measured 24h after the final injection in rats that received daily injections of 1μg of [3H]dimethylnitrosamine/kg for 2 or 3 weeks. After 3 weeks, O6-methylguanine contents in the liver DNA were about 1% of the 7-methylguanine contents. The amount of 7-methylguanine in the liver DNA was 10 times that in the kidney DNA, but liver O6-methylguanine contents were only twice those in the kidney. 6. Extracts able to catalyse the removal of O6-methylguanine from alkylated DNA in vitro were isolated from liver and kidney. These extracts did not lead to the loss of 7-methylguanine from DNA. 7. The possible relevance of the formation and removal of O6-methylguanine in DNA to the risk of tumour induction by exposure to low concentrations of dimethylnitrosamine is discussed.  相似文献   

16.
17.
The proportion of sheared rat liver DNA recovered from benzoylated DEAE-cellulose in the final stage following stepwise elution with NaCl and caffeine solutions was dependent upon the DNA isolation procedure. An increase in the proportion of DNA containing single stranded regions, consequent upon delay or addition of Mg2+ prior to phenol extraction, suggested nuclease mediated degradation. Administration of methyl methanesulphonate to rats resulted in a consistent proportional increase in the caffeine-eluted fraction. The results of caffeine gradient elution of control and alkylated DNA from benzoylated DEAE-cellulose were consistent with repair-associated single stranded regions being substrates for endogenous single strand-specific exonucleases.  相似文献   

18.
A preparation of the closed circular DNA duplex was obtained from whole rat ascites hepatoma cells, AH66, by lysis of cells with SDS and purification by CsCl-dye buoyant-density centrifugation. RNase A converted the closed circular mitochondrial DNA to open circular molecules. The closed circular DNA was also sensitive to alkali. The conversion to the open form was shown from the results of centrifugal analyses on neutral and alkaline sucrose density gradients and CsCl-ethidium bromide. These results indicate the presence of at least one RNA region in closed circular double stranded mitochondrial DNA.  相似文献   

19.
A 10-16 fold increase in rat liver cytoplasmic DNA polymerase (DNA polymerase-alpha) was observed by 24 hrs after two thirds partial hepatectomy. Injection of either N,N-dimethylnitrosamine (DMN) or methyl methanesulphonate (MMS) At 6 or 12 hrs after partial hepatectomy completely inhibited this increased production of polymerase, but when given at 20 hours they had less effect. Neither compound altered the molecular size distribution of the enzyme. These data indicate that the lowered levels of DNA polymerase-alpha could play a major role in the reduction in DNA synthesis which occurs after carcinogen treatment.  相似文献   

20.
The enzyme 3-methyladenine DNA glycosylase II (AlkA) is a bacterial repair enzyme that acts preferentially at 3-methyladenine residues in DNA, releasing the damaged base. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay (single cell gel electrophoresis) they appear as DNA strand breaks. AlkA is no t lesion-specific, but has a low activity even w ith undamagedbases. We have tested the enzyme at different concentrations to find conditions that maximise detection of alkylated bases with minimal attack on normal, undamaged DNA. AlkA detects damage in the DNA of cells treated with low concentrations of methyl methanesulphonate. We also find low background levels of alkylated bases in normal human lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号