首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allosteric modulatory effects of 12 biphenyl derivatives of diflunisal and two fenamates were studied on A-type receptors of GABA (GABAAR) via [3H]4'-ethynylbicycloorthobenzoate (EBOB) binding to synaptic membrane preparations of rat forebrain. A simplified ternary allosteric model was used to determine binding affinities of the compounds and the extents of cooperativity with GABA. Structure activity analysis revealed that 4-hydroxy substituents of the biphenyls contribute to their micromolar binding affinities more than 3-carboxyl groups. Electron-withdrawing fluorinated substituents, especially in ortho position, were also advantageous. These factors also strongly enhanced the cooperativity with GABA binding. The correlation between displacing potency of the allosteric agents and cooperativity with GABA suggests that these processes are associated with common mechanisms. The pharmacological relevance of these interactions is discussed. These data help to differentiate the structural requirements of these agents to act on GABAergic neurotransmission versus nonsteroidal anti-inflammatory effects.  相似文献   

2.
In searching for a novel CCR3 receptor antagonist, we designed a library that included a variety of carboxamide derivatives based on the structure of our potent antagonists for human CCR1 and CCR3 receptors, and screened the new compounds for inhibitory activity against 125I-Eotaxin binding to human CCR3 receptors expressed in CHO cells. Among them, two 2-(benzothiazolethio)acetamide derivatives (1a and 2a) showed binding affinities with IC50 values of 750 and 1000 nM, respectively, for human CCR3 receptors. These compounds (1a and 2a) also possessed weak binding affinities for human CCR1 receptors. We selected la as a lead compound for derivatization to improve in vitro potency and selectivity for CCR3 over CCRI receptors. Derivatization of la by incorporating substituents into each benzene ring of the benzothiazole and piperidine side chain resulted in the discovery of a compound (1b) exhibiting 820-fold selectivity for CCR3 receptors (IC50 = 2.3 nM) over CCR1 receptors (IC50 = 1900 nM). This compound (1b) also showed potent functional antagonist activity for inhibiting Eotaxin (IC50 = 27 nM)- or RANTES (IC50 = 13 nM)-induced Ca2+ increases in eosinophils.  相似文献   

3.
Based on the structure of ZK91296 (4d), a high affinity partial agonist of the central benzodiazepine (omega) receptor, a series of pyrrolo[2,3-c]pyridine-5-carboxylate derivatives having mainly aralkyl and aralkyloxy substituents at C-3 was synthesized. The in vitro binding affinities of these compounds for three subclasses of the omega receptor (omega1, omega2, omega5) were determined using rat brain tissue. Practically all of these compounds (except the diethyl ester derivative 22c) showed an approximately twofold selectivity for omega1 (IC50's in the 200-500 nM range) compared to omega2 receptors and practically no affinity for omega5 receptors. Compound 22c showed the highest affinity of all the compounds synthesized (IC50 = 70 nM for omega1 receptors) as well as a fivefold selectivity for omega1 versus omega2 receptors but also displayed significant binding to omega5 receptors (IC50 = 250 nM). The absence of appreciable binding of 4-methyl and 4-methoxymethyl derivatives to omega receptors, in contrast to beta-carbolines having these similarly located substituents, suggests that the pyrrolo[2,3-c]pyridine-5-carboxylates may be considered an entirely novel class of selective omega receptor ligands.  相似文献   

4.
In the course of developing a metabolically stable M3 receptor antagonist from the prototype antagonist, J-104129 (1), introduction of certain substituents into the cyclopentane ring of 1 was found to be effective not only in improving metabolic stability but also in greatly enhancing the subtype selectivity. Among the cyclopentane analogues, sulfonamide derivatives (10f) and (10g) displayed 160- and 310-fold selectivity for M3 over M2 receptors, and both were significantly more selective than the prototype antagonist (120-fold). Subsequent derivatization of the sulfonamide series led to the highly selective M3 receptor antagonists (10h, 10i and 10j) with >490-fold selectivity for M3 over M2 receptors. Among them, p-nitrophenylsulfonamide (J-107320, 10h) exhibited 1100-fold selectivity for M3 receptors (Ki = 2.5 nM) over M2 receptors (Ki = 2800 nM) in the human muscarinic receptor binding assay using [3H]-NMS as a radio ligand.  相似文献   

5.
Arylcycloalkylamines, such as phenyl piperidines and piperazines and their arylalkyl substituents, constitute pharmacophoric groups exemplified in several antipsychotic agents. A review of previous reports indicates that arylalkyl substituents can improve the potency and selectivity of the binding affinity at D2-like receptors. In this paper, we explored the contributions of two key pharmacophoric groups, that is, 4′-fluorobutyrophenones and 3-methyl-7-azaindoles, to the potency and selectivity of synthesized agents at D2-like receptors. Preliminary observation of binding affinities indicates that there is little predictability of specific effects of the arylalkyl moieties but the composite structure is responsible for selectivity and potency at these receptors.  相似文献   

6.
A series of new N-substituted derivatives of morphinan was synthesized and their binding affinity for the three opioid receptors (mu, delta, and kappa) was determined. A paradoxical effect of N-propargyl (MCL-117) and N-(3-iodoprop-(2E)-enyl) (MCL-118) substituents on the binding affinities for the mu and kappa opioid receptors was observed. All of these novel derivatives showed a preference for the mu and kappa versus delta binding.  相似文献   

7.
Benzilic ester derivatives with a basic moiety like N-methyl-4-piperidyl benzilates are potential drugs for the treatment of urinary incontinence, duodenal and gastric ulcers and Parkinson's disease. The effect of structural variations of chiral N-methyl-4-piperidyl benzilates was investigated using radioligand binding studies on muscarinic receptors (M1-M3). The results of the binding studies demonstrate that the absolute configuration and the aromatic substituent of benzilates have an influence on muscarinic affinity and selectivity. In this regard, (S)-configuration of benzilates and hydrophilic aromatic substituents seems to enhance muscarinic affinity. A model of the receptor ligand complex for N-methyl-4-piperidyl benzilates was obtained by molecular modelling. Both the affinity of enantiomeric benzilic esters and the subtype selectivity for muscarinic receptors are comprehensively explained by this model.  相似文献   

8.
Hexane-bisammonium-type compounds containing lateral phthalimide moieties are known to have a rather high affinity for the allosteric site of muscarinic M2 receptors. In order to get more insight into the contribution of the lateral substituents for alloster binding affinity, a series of compounds with unilaterally varying imide substituents were synthesized and tested for their ability to retard allosterically the dissociation of [3H]N-methylscopolamine from the receptor protein (control t1/2 = 2 min; 3 mM MgHCO4, 50 mM Tris, pH 7.3, 37 degrees C). Among the test compounds, the naphthalimide containing agent (half maximum effect at ECs5,diss = 60 nM) revealed the highest potency. Apparently, its affinity for the allosteric site in NMS-occupied receptors is 20fold higher compared with the phthalimide containing parent compound W 84. Analysis of quantitative structure-activity relationships yielded a parabolic correlation between the volume of the lateral substituents and the allosteric potency. The maximal volume was determined to be approximately 600 A3 suggesting that the allosteric binding site contains a binding pocket of a defined size for the imide moiety.  相似文献   

9.
Abstract: A series of l-phenyl-1 H -3-benzazepine analogues were assessed for enantiomeric and structure-affinity relationships at human putamen D-1 dopamine receptors labelled with [3H]SCH 23390. Substitution at the 7-position of both 3-H and 3-methyl benzazepine molecules critically affected affinity for these receptors over a 500-fold range. The general rank order of potency of 7-substituents was Cl = Br ≫ CH3 > OH ≥ H. 3-Methyl substituents increased the affinity of 7-H and 7-OH compounds two- to fivefold compared to desmethyl counterparts. The displacement of [3H]SCH 23390 binding showed substantial enantioselec-tivity; the R-enantiomer of SKF 83566 was 500-fold more potent that its S-antipode. However, the displacement of [3H]spiperone binding from D-2 sites in the same tissue showed negligible enantioselectivity. Through such structure-affinity relationships, these studies may help to define the topography of the human brain D-1 dopamine receptor and guide the design of more selecive agents for functional studies.  相似文献   

10.
The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]- oxy]phenyl]-1,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H] CGS21680 (2-[2-[4-carboxyethyl)phenyl]ethyl]amino] adenosine-5'-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversible binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein.  相似文献   

11.
In order to identify compounds selective for the GluK1 and GluK3 subtypes of kainate receptors we have designed and synthesized a series of (S)-2-amino-3-((2-carboxyethyl)phenyl)propanoic acid analogs with hydrogen bond donating and accepting substituents on the aromatic ring. Based on crystal structures of GluK1 in complex with related ligands, the compounds were designed to explore possible interactions with non-conserved residues outside the glutamate ligand binding site and challenge the water binding network. Apart from obtaining GluK1 selective antagonists one analog with a phenyl-substituted urea (compound 31) showed some preference for GluK3 over GluK1-receptors. Docking studies indicate that this preference may be attributed to contacts between the NH of the urea substituent and non-conserved Ser741 and Ser761 residues.  相似文献   

12.
A series of 1-[3-(4-substituted phenylthio) propyl]-4-(substituted phenyl) piperazines has been synthesized and evaluated for hypotensive activity. The QSAR studies indicate that resonance and hydrophobic parameters of the aryl substituents are important for hypotensive activity. The similar role of resonance parameter in describing the variance of 5-HT(2A) receptor binding affinities of these compounds suggests a possible role of 5-HT(2A) receptors in mediating the hypotensive action of title compounds.  相似文献   

13.
In a previous paper (Colotta V. et al., J. Med. Chem. 2000, 43, 1158), we reported the synthesis and the binding activity of some 4-oxo (A) and 4-amino (B) substituted 1,2,4-triazolo[4,3-a]quinoxalin-1-ones, bearing different substituents on the appended 2-phenyl ring (region 1), some of which were potent and selective A(1) or A(3) antagonists. To further investigate the SAR in this class of antagonists, in the present paper some 2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives of both series A and B, bearing simple substituents on the benzofused moiety (region 2), are reported. The binding data at bovine A(1) (bA(1)) and A(2A)(bA(2A)) and at human A(3) (hA(3)) adenosine receptors (ARs) show that in series A (compounds 1, 4-11) the presence of substituents on the benzofused moiety is, in general, not advantageous for anchoring at all three AR subtypes, while within series B (compounds 12-21) it exerts a beneficial effect for both bA(1) and hA(3) AR affinities which span the low nanomolar range. In particular, among the 4-amino derivatives 12-21, the 8-chloro-6-nitro (compound 17) and the 6-nitro (compound 18) substitutions afford, respectively, the highest bA(1) and hA(3) AR affinity. Moreover, compound 18, additionally investigated in binding assays at human A(1) (hA(1)) receptors, shows a 183-fold selectivity for hA(3) versus hA(1) receptors. Finally, the SAR studies provide some new insights about the steric and lipophilic requirements of the hA(3) receptor binding pocket which accommodates the benzofused moiety of our 4-amino-triazoloquinoxalin-1-one derivatives.  相似文献   

14.
A series of NAD+ analogues, modified on the pyridinium ring, have been tested for their enzymic properties in reactions with D-glyceraldehyde-3-phosphate dehydrogenase form sturgeon muscle, rabbit muscle and Bacillus stearothermophilus. The observed activity, inhibition and binding data are correlated to the structure of the enzyme and coenzyme analogue by model building on a Vector General interactive graphic display system using coordinates from the B. stearothermophilus holoenzyme structure. Most of the analogues with substituents in the pyridinium-3 position could be bound to glyceraldehyde-3-phosphate dehydrogenase, either in manner similar to NAD+ or in a completely different way with the substituted pyridinium ring rotated 110 degrees or more around the glycosidic bond. This indicates different possible modes of binding of NAD+ analogues within the pyridinium binding subsite. Analogues with substituents in the pyridinium-4 position are shown to be weakly bound to glyceraldehyde-3-phosphate dehydrogenase. This is explained by a strong interaction of the substituent in the 4 position with the residues Asn-313 and Cys-149.  相似文献   

15.
Human platelet ionophore release-products (IRP) inhibit the binding of 125I-labelled epidermal growth factor (125I-EGF) to its receptors on Swiss 3T3 cells. The inhibition appears to be caused by platelet-derived growth factor (PDGF) in the IRP and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. However, our results indicate that PDGF does not bind directly to EGF receptors, since (1) PDGF does not down-regulate EGF receptors; (2) the PDGF-mediated inhibition of 125I-EGF binding is temperature-dependent; (3) cells which possess EGF receptors but lack PDGF receptors do not exhibit a PDGF-mediated inhibition of 125I-EGF binding.  相似文献   

16.
A quantitative structure-activity relationship study was carried out for the binding of a series of 'classical' benzodiazepines (BZs) and some beta-carbolines with BZ receptors to investigate the active sites in the latter and the nature of the binding of compounds with them. Using the Hansch approach, an attempt was made to correlate binding affinities of compounds with various physico-chemical and electronic properties of substituents. The correlations obtained showed the main roles were played by the hydrophobic constant pi and the Hammett constant sigma (an electronic parameter) of various substituents. This led to the suggestion that BZ receptors have many additional hydrophobic, hydrogen bonding and polar sites other than those suggested by Hollinshead et al. (1990). From the present study, the Hollinshead model of interaction was found to be inadequate to account fully for the binding of all types of compounds.  相似文献   

17.
A series of 16 1-phenyl-1H-1,2,3-triazoles with substituents at both the 4- and 5-positions of the triazole ring were synthesized, and a total of 49 compounds, including previously reported 4- or 5-monosubstituted analogues, were examined for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist, to human homo-oligomeric beta3 and hetero-oligomeric alpha1beta2gamma2 gamma-aminobutyric acid (GABA) receptors. Among all tested compounds, the 4-n-propyl-5-chloromethyl analogue of 1-(2,6-dichloro-4-trifluoromethylphenyl)-1H-1,2,3-triazole showed the highest level of affinity for both beta3 and alpha1beta2gamma2 receptors, with K(i) values of 659pM and 266nM, respectively. Most of the tested compounds showed selectivity for beta3 over alpha1beta2gamma2 receptors. Among all 1-phenyl-1H-1,2,3-triazoles, the 4-n-propyl-5-ethyl analogue exhibited the highest (>1133-fold) selectivity, followed by the 4-n-propyl-5-methyl analogue of 1-(2,6-dibromo-4-trifluoromethylphenyl)-1H-1,2,3-triazole with a >671-fold selectivity. The 2,6-dichloro plus 4-trifluoromethyl substitution pattern on the benzene ring was found to be important for the high affinity for both beta3 and alpha1beta2gamma2 receptors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) provided similar contour maps, revealing that an electronegative substituent at the 4-position of the benzene ring, a compact, hydrophobic substituent at the 4-position of the triazole ring, and a small, electronegative substituent at the 5-position of the triazole ring play significant roles for the high potency in beta3 receptors. Molecular docking studies suggested that the putative binding sites for 1-phenyl-1H-1,2,3-triazole antagonists are located in the channel-lining 2'-6' region of the second transmembrane segment of beta3 and alpha1beta2gamma2 receptors. A difference in the hydrophobic environment at the 2' position might underlie the selectivity of 1-phenyl-1H-1,2,3-triazoles for beta3 over alpha1beta2gamma2 receptors. The compounds that had high affinity for beta3 receptors with homology to insect GABA receptors showed insecticidal activity against houseflies with LD(50) values in the pmol/fly range. The information obtained in the present study should prove helpful for the discovery of selective insect control chemicals.  相似文献   

18.
The finding that alkyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and N-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxamide derivatives may be high-affinity ligands at the benzodiazepine binding site of the GABA(A) receptor, prompted a study of 3-acyl-1,4-dihydro-4-oxoquinoline (3-acyl-4-quinolones). In general, the affinity of the 3-acyl derivatives was found to be comparable with the 3-carboxylate and the 3-carboxamide derivatives, and certain substituents (e.g., benzyl) in position 6 were again shown to be important. As it is believed that the benzodiazepine binding site is situated between an alpha- and a gamma-subunit in the GABA(A) receptor, selected compounds were tested on the alpha(1)beta(2)gamma(2s), alpha(2)beta(2)gamma(2s) and alpha(3)beta(2)gamma(2s) GABA(A) receptor subtypes. The 3-acyl-4-quinolones display various degrees of selectivity for alpha(1)- versus alpha(2)- and alpha(3)-containing receptors, and high-affinity ligands essentially selective for alpha(1) over alpha(3) were developed.  相似文献   

19.
N,N-dibenzylpiperazines have high affinity for sigma receptors, and we aimed to increase their anticocaine activity by introducing substituents known to enhance such activity in other sigma ligands. Ligands with high affinity for sigma-1 receptors resulted, but their activity in attenuating cocaine-induced convulsions did not correlate with sigma-1 binding affinity, and may be more closely related to their sigma-2 binding affinities.  相似文献   

20.
Pyrazoloquinolinones (PQs) have been extensively studied as modulators of GABAA receptors with different subunit composition, exerting modulatory effects by binding at α+/β- interfaces of GABAA receptors. PQs with a substituent in position R7 have been reported to preferentially modulate α6- subunit containing GABAA receptors which are mostly expressed in the cerebellum but were also found in the olfactory bulb, in the cochlear nucleus, in the hippocampus and in the trigeminal sensory pathway. They are considered potentially interesting in the context of sensori-motor gating deficits, depressive-like behavior, migraine and orofacial pain. Here we explored the option to modify the lead ligands’ R7 position. In the compound series we observed two different patterns of allosteric modulation in recombinantly expressed α6β3γ2 receptors, namely monophasic and biphasic positive modulation. In the latter case the additional phase occurred in the nanomolar range, while all compounds displayed robust modulation in the micromolar range. Nanomolar, near silent binding has been reported to occur at benzodiazepine binding sites, but was not investigated at the diazepam insensitive α6+/γ2- interface. To clarify the mechanism underlying the biphasic effect we tested one of the compounds in concatenated receptors. In these constructs the subunits are covalently linked, allowing to form either the α6+/γ2- interface, or the α6+/β3- interface, to study the resulting modulation. With this approach we were able to ascribe the nanomolar modulation to the α6+/γ2- interface. While not all compounds display the nanomolar phase, the strong modulation at the α6+/β3 interface proved to be tolerant for all tested R7 groups. This provides the future option to introduce e.g. isotope labelled or fluorescent moieties or substituents that enhance solubility and bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号