首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A characteristic of the human lysosomal disorder I-cell disease is an abnormal excretion of most lysosomal hydrolases, including beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30; beta-hexosaminidase) by cultured skin fibroblasts. Treatment of I-cell cultures with cycloheximide or tunicamycin demonstrated that (1) I-cell fibroblasts rapidly excrete all newly synthesized beta-hexosaminidase, (2) two qualitatively distinct pools of beta-hexosaminidase isoenzymes exist inside I-cell fibroblasts, one of which is a rapid-turnover excretory pool, and (3) the induction of an abnormal glycosylation of beta-hexosaminidase by tunicamycin in normal or I-cell fibroblast cultures does not affect subsequent excretion of the enzyme.  相似文献   

2.
Lymphoblastoid cells transformed by Epstein-Barr virus from peripheral lymphocytes of normal individuals and I-cell disease (ICD) patients were used for the enzymic study of lysosomal hydrolases and N-acetylglucosamine 1-phosphotransferase. ICD lymphoblastoid cells secreted a larger amount of hydrolases into medium than normal cells, although the intracellular hydrolases were not deficient in ICD cells. The stimulating effect of 10 mM ammonium chloride on secretion of hydrolases was found only with normal cells, and not with ICD cells, indicating that the hydrolase molecule bearing mannose 6-phosphate was secreted. The ICD lymphoblastoid cells retained the enzymologic characteristics of both lysosomal hydrolases and N-acetylglucosamine 1-phosphotransferase seen in ICD fibroblasts, which allows us to study the pathophysiology of ICD in cells other than fibroblasts.  相似文献   

3.
This study represents the first example of immunological localization of lysosomal acid phosphatase. The intracellular localization of lysosomal acid phosphatase was investigated with immunocytochemical methods at the light and electron microscopical level in cultured fibroblasts obtained from normal subjects and from a patient with I-cell disease. Double-labeling studies using fluorescence microscopy showed that acid phosphatase is present in the same organelles as other hydrolases. At the electron microscopic level in control fibroblasts acid phosphatase was found in the rough endoplasmic reticulum, lysosomes, at the plasma membrane, in vesicles just below the plasma membrane and in multivesicular bodies. This localization was comparable with that of other lysosomal enzymes tested (acid alpha-glucosidase, N-acetyl-beta-hexosaminidase, beta-galactosidase). Acid phosphatase labeling was mainly found in association with the lysosomal membrane and with membranous material present within the lysosome. In I-cell fibroblasts the label was present in the same subcellular organelles but always associated with membranous structures. We suggest that the association of acid phosphatase with membranes might explain the normal enzyme activity found in I-cell fibroblasts.  相似文献   

4.
The biosynthesis and secretion of lysosomal alpha-mannosidase was studied in metabolically labelled fibroblasts from controls and two patients with mannosidosis. Normal fibroblasts secrete alpha-mannosidase as a 110kDa polypeptide. Intracellularly alpha-mannosidase is represented by several polypeptides with apparent Mrs ranging from 40 to 67kDa. In two mannosidosis cell lines none of intra- and extracellular polypeptides of alpha-mannosidase were detectable. The mannosidosis fibroblasts secreted acid alpha-mannosidase activity at one third of the normal rate. In contrast to normal cells the secretion was not enhanced by NH4C1 and the secreted activity was not immunoprecipitable, indicating that the acid alpha-mannosidase activity secreted by mannosidosis fibroblasts is not related to the lysosomal alpha-mannosidase.  相似文献   

5.
Osteoclasts, the bone-digesting cells, are polarized cells that secrete acid hydrolases into a resorption lacuna where bone degradation takes place. The molecular mechanisms underlying this process are poorly understood. To analyze the nature of acid hydrolases secreted by osteoclasts, we used the mouse myeloid Raw 264.7 cell line that differentiates in vitro into mature osteoclasts in the presence of the receptor activator of NF-kappaB ligand. Upon differentiation, we observed a strong increase in the secretion of mannose 6-phosphate-containing acid hydrolases. A proteomic analysis of the secreted proteins captured on a mannose 6-phosphate receptor affinity column revealed 58 different proteins belonging to several families of acid hydrolases of which 16 are clearly involved in bone homeostasis. Moreover these acid hydrolases were secreted as proproteins. The expression of most of the identified acid hydrolases is unchanged during osteoclastogenesis. Thus, our data strongly support the notion that the polarized secretion of acid hydrolases by osteoclasts results from a reorganization of key steps of membrane traffic along the lysosomal pathway rather than from a fusion of lysosomes with the membrane facing the resorption lacuna.  相似文献   

6.
Adsorptive pinocytosis of acid hydrolases by fibroblasts depends on phosphomannosyl recognition markers on the enzymes and high-affinity pinocytosis receptors on the cell surface. In this study, beta- glucuronidase binding to the cell surface of attached fibroblasts was found to be saturable and inhibitable by mannose-6-phosphate (Man-6-P). Dissociation of cell-bound beta-glucuronidase occurred very slowly at neutral pH, but was greatly accelerated by lowering the pH below 6.0, or by exposure to Man-6-P. Comparison of the maximal cell surface binding and the observed rate of enzyme pinocytosis suggests that the pinocytosis receptors are replaced or reused about every 5 min. Enzyme pinocytosis was not affected by inhibition of new protein synthesis for several hours, suggesting a large pool of internal receptors and/or reuse of internalized receptors. Chloroquine treatment of normal human fibroblasts had three effects: (a) greatly enhanced secretion of newly synthesized acid hydrolases bearing the recognition marker for uptake, (b) depletion of enzyme-binding sites from the cell surface, and (c) inhibition of pinocytosis of exogenous enzyme. Only the third effect was seen in I-cell disease fibroblasts, which were also less sensitive than control cells to this effect. These observations are consistent with a model for transport of acid hydrolases that proposes that delivery of newly synthesized acid hydrolases to lysosomes requires the phosphomannosyl recognition marker on the enzymes, and intracellular receptors that segregate receptor-bound enzymes into vesicles for transport to lysosomes. This model explains how chloroquine, which raises intralysosomal pH, can disrupt both the intracellular pathway for newly synthesized acid hydrolases, and the one for uptake of exogenous enzyme by cell surface pinocytosis receptors.  相似文献   

7.
Summary Fibroblasts derived from patients with I-cell disease have been shown to accumulate many natural substrates including a three to fourfold increase in sialic acid content compared to that found in normal fibroblasts. This diverse accumulation of storage material is due to a massive deficiency of multiple lysosomal hydrolases as they are preferentially excreted into the culture fluid. There is evidence that the I-cell plasma membrane itself is abnormal with respect to certain transferase activities and in its sensitivity to freezing and Triton X-100. In this study, we have shown that a neuraminidase-sensitive substrate, and perhaps others in I-cell fibroblasts, contribute to an increased electronegativity of the I-cell fibroblast surface and to the cells' sensitivity to freezing. We also found that neuraminidase treatment of I-cell fibroblasts before preservative freezing in liquid nitrogen enables the cells to adapt more easily to subculture upon thawing. This project was supported in part by National Institutes of Health (NIH) BRSG Grant RR-05493, NIH Grant 1-R01-HD-11453-01-A1, National Science Foundation Grant PCM 77-05733, and Maternal and Child Health Service Project 417. Georgirene D. Vladutiu is the recipient of Research Career Development Award 1K04 HD 00312-01A1 from the National Institutes of Health.  相似文献   

8.
The biosynthesis of lysosomal acid phosphatase was studied in a normal human embryonic lung cell line, WI-38. Cells were labeled with radioactive leucine under a variety of conditions, the enzyme was immunoprecipitated using a monospecific antiserum raised against human liver lysosomal acid phosphatase, and the products were separated by electrophoresis and were visualized by fluorography. Lysosomal acid phosphatase constitutes 60% of the total tartrate-inhibitable acid phosphatase in WI-38. It is initially synthesized as a high-molecular-weight precursor polypeptide of 69 kDa. The precursor polypeptide is rapidly glycosylated and processed to a mature enzyme of 53-45 kDa via intermediates of 65 and 60 kDa in WI-38 cells. The 69-kDa precursor polypeptide is also converted to larger precursor polypeptides of 74 and 80 kDa. The multiplicity of precursor polypeptides is due at least in part to differences in the glycosylation and phosphorylation of the polypeptides. Sensitivity of phosphorylated oligosaccharide chains from precursor, mature and small polypeptides to endo-beta-hexosaminidase H-catalyzed cleavage suggests the presence of high-mannose phosphorylated oligosaccharide chains similar to those present on many other lysosomal enzymes. The effects of tunicamycin and ammonium chloride were also studied. In contrast to the effect of ammonium chloride on arylsulfatase A secretion, the lysosomal acid phosphatase in WI-38 cells was not secreted in the presence of NH4Cl. This is consistent with the existence of an alternate route for the transfer of lysosomal acid phosphatase into lysosomes. This alternate route may be the reason that I-cell fibroblasts contain a normal level of lysosomal acid phosphatase.  相似文献   

9.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

10.
Fibroblasts from I-cell disease, a genetically-determined lysosomal storage disease, are shown to contain large amounts of phase-dense lysosomes. These lysosomes accumulated acridine orange and were specifically labeled with antibodies to arylsulfatase A. In normal skin fibroblasts the number of arylsulfatase-containing lysosomes was considerably lower. By immunocytochemistry, metabolic labeling and enzyme assay, the arylsulfatase A in I-cell fibroblasts was shown to be synthesized, stored and secreted at a level that was several-fold higher than that present in heterozygous I-cell or normal fibroblasts. Arylsulfatase A in I-cell fibroblasts differed from arylsulfatase in normal fibroblasts by the absence of endoglycosidase H-sensitive phosphorylated oligosaccharides. These findings indicate that arylsulfatase A in I-cells is targeted to lysosomes by a mechanism that does not appear to involve the phosphorylated mannose marker.  相似文献   

11.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

12.
Human lymphoblast and fibroblast cell lines from a patient with I-cell disease and normal individuals were characterized with respect to certain properties of UDP-N-acetylglucosamine:lysosomal enzyme precursor N-acetylglucosamine phosphotransferase. The enzyme isolated from normal lymphoblast and fibroblast cell lines expressed similar kinetic properties, substrate specificities and subcellular localizations. Coincident with the severe reduction of N-acetylglucosamine phosphotransferase activity in both I-cell fibroblast and lymphoblast cell lines, there was an increased secretion of several lysosomal enzymes compared to normal controls. Subsequent examination of N-acetyl-beta-D-hexosaminidase secreted by the I-cell lymphoblasts demonstrated a significant increase in adsorption of the I-cell enzyme to Ricinus communis agglutinin, a galactose-specific lectin. However, the I-cell lymphoblasts did not exhibit the significant decrease in intracellular lysosomal activities seen in I-cell fibroblasts. Our results suggest that lymphoblasts not only represent an excellent source for the purification of N-acetylglucosamine phosphotransferase, but in addition, represent a unique system for studying alternate mechanisms involved in the targeting of lysosomal enzymes.  相似文献   

13.
Summary The addition of 88 mM sucrose to the culture medium of human skin fibroblasts from normal subjects caused remarkable increase in the intracellular lysosomal hydrolase activities. The mechanism of this induction by sucrose loading was carefully studied with several fibroblast strains of different inherited lysosomal storage disorders. In single lysosomal hydrolase defect such as GM1-gangliosidosis, mannosidosis and Sandhoff disease, no induction of the deficient hydrolase was found with 88 mM sucrose loading. In contrast, sucrose loading caused normalization of intracellular lysosomal hydrolase activities in I-cell disease fibroblasts and cytoplasmic inclusion materials disappeared. Subsequent investigations reveal that I-cell disease cells are classified into three subgroups by the degree of hydrolase induction by sucrose loading; a high responding, an intermediate responding and a no-response group. The heterogeneity may be based upon different induction by sucrose loading of the enzyme, probably the residual phosphotransferase which is involved in the processing steps of lysosomal enzyme molecules. With the addition of mannose-6-phosphate and 10 mM NH4Cl to cultured skin fibroblasts, it was shown that sucrose loading caused increased synthesis of lysosomal enzyme proteins. The result of the test with 2,4-dinitrophenol suggests that sucrose is indeed pinocytosed by cultured human skin fibroblasts and localized in lysosomes and that this event is the essential factor to trigger the induction of lysosomal hydrolases. Simultaneous loading of both invertase and sucrose in cultured cells caused no induction of -mannosidase activity. This result indicates that invertase is also pinocytosed, reaches the lysosomes and hydrolyzes sucrose in the lysosomes. Lysosomal overloading with sucrose resulted in induction of lysosomal hydrolases and invertase blocked the induction of -mannosidase activity. However, some induction still exists in -galactosidase and -fucosidase activity. Thus it is very likely that the induction of lysosomal hydrolases demands a complicated process.In this article, we investigated the effects of sucrose on the lysosomal hydrolases in cultured human skin fibroblasts of several inherited lysosomal storage disorders and normal subjects and discuss the possible mechanism. of the induction of lysosomal hydrolase activities by sucrose loading.  相似文献   

14.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   

15.
Previous studies of the synthesis, phosphorylation, and processing of β-hexosaminidase in cultured fibroblasts from normal individuals and from patients with mucolipidosis II (I-cell disease) (A. Hasilik and E. F. Neufeld, 1980, J. Biol. Chem.225, 4937–4946) have been extended to fibroblasts derived from patients with a related genetic disorder, mucolipidosis III (pseudo-Hurler polydystrophy). The enzyme was biosynthetically labeled in pulse-chase experiments with [3H]leucine and 33Pi, and isolated from cells and medium by immunoprecipitation. The constitutent α and β chains of the enzyme were separated by polyacrylamide gel electrophoresis under reducing and denaturing conditions, visualized by autoradiography and fluorography, extracted from the gel, and quantitated by liquid scintillation spectrometry. Enzyme produced by fibroblasts from mucolipidosis III patients had a very low but detectable phosphate content; a high proportion of newly made enzyme was secreted, though some remained within the cells and was processed to mature enzyme; the presence of NH4Cl during the labeling and chase did not significantly increase the amount of enzyme secreted. The β-hexosaminidase produced by mucolipidosis III fibroblasts thus resembled more closely that produced by fibroblasts from patients with mucolipidosis II than the normal enzyme. β-Hexosaminidase made by fibroblasts from mucolipidosis II heterozygotes was similar to the normal enzyme with respect to phosphorylation, processing, and secretion. Mucolipidosis II and III fibroblasts could endocytose normal precursor β-hexosaminidase and process it to the mature form. The deficiency of mature enzyme in the patients' cells may therefore be attributed to failure of the unphosphorylated enzyme to be incorporated into lysosomes, where processing would normally occur.  相似文献   

16.
Cultured fibroblasts from three unrelated patients with I-cell disease (mucolipidosis II) have a 3 to 4 fold increase in total sialic acid when compared to control fibroblasts. Sialic acid levels in a number of other lysosomal disorders, i.e., mucopolysaccharidosis I, II, III, VI, metachromatic leukodystrophy, GM1 gangliosidosis, mannosidosis, Gaucher's and Sandhoff's disease are within the normal range suggesting that this is a finding specific for I-cells. Additionally, sonicates of cultured fibroblasts from controls were shown to have an acid sialidase capable of removing sialic acid from added fetuin at pH 4.2 in 0.05M acetate buffer. In contrast, I-cell fibroblasts, within the limits of the assay, lack this enzyme activity.  相似文献   

17.
The carboxylic ionophore, monensin, blocks the migration of glycoprotein-containing vesicles from the Golgi region to the plasma membrane in fibroblasts resulting in an accumulation of secretory products in the Golgi cisternae. Treatment of cultured I-cell fibroblasts with monensin (0.5 muM) decreased the abnormal excretion of beta-hexosaminidase to 40% of untreated cultures within 15 min. A corresponding intracellular accumulation of the enzyme to greater than 200% of untreated cultured by 24 h was also observed. A small intracellular accumulation and slightly enhanced excretion of beta-hexosaminidase occurred in treated normal fibroblasts cultures. The intra- and extra-cellular distribution of newly synthesized beta-hexosaminidase in both monensin-treated normal and I-cell fibroblasts were electrophoretically indistinguishable from the four bands characteristic of I-cell intracellular beta-hexosaminidase. The excreted enzyme from both cultures was found to be a low- or no-uptake form. This form of beta-hexosaminidase may have been excreted from a secondary route preceding the site of the monensin effect. The similar findings in monensin-treated normal and I-cell cultures suggest that the subcellular site of the biochemical defect in I-cell disease is at a location after the site of the monensin effect i.e. late in the Golgi region or at a post-Golgi-region location.  相似文献   

18.
We have examined frozen liver tissue for N-acetylglucosamine-l-phosphotransferase, an enzyme required for the formation of the mannose 6-phosphate recognition marker of lysosomal enzymes. Using [β32P]-UDPGlcNAc and placental β-hexosaminidase B as N-acetylglucosamine l-phosphate donor and acceptor, respectively, we were unable to find activity of the transferase in 100,000 × g membranes prepared from livers of patients with I-cell disease, whereas activity was readily observed in membranes from control livers stored under the same conditions. Yet the activity of several lysosomal enzymes (β-N-acetylglucosaminidase, β-glucuronidase, α-mannosidase and α-L-iduronidase) was comparable in liver tissue of I-cell patients and controls, and only β-galactosidase activity showed a marked reduction. These results suggest that in contrast to cultured skin fibroblasts, liver may be able to introduce into lysosomes acid hydrolases that lack the mannose 6-phosphate recognition marker.  相似文献   

19.
The pinocytosis by fibroblasts of beta-hexosaminidase (EC 3.2.1.30) excreted by cultured skin fibroblasts from a patient with I-cell disease was not enhanced by neuraminidase treatment of the enzyme. The uptake of sialic acid-rich normal plasma beta-hexosaminidase was minimal and neuraminidase treatment did not appreciably enhance uptake. In contrast, sialic acid-rich normal seminal fluid beta-hexosaminidase was readily pinocytosed regardless of neuraminidase treatment. Thus the presence of sialic acid on beta-hexosaminidase does not influence uptake and a neuraminidase deficiency in I-cell disease may not be directly responsible for excessive extracellular enzyme.  相似文献   

20.
Suspension-cultured cells of sycamore (Acer pseudoplatanus L.) secrete a number of acid hydrolases and other proteins that have both highmannose and complex asparagine-linked glycans. We used affinity chromatography with concanavalin A and an antiserum specific for complex glycans in conjunction with in vivo-labeling studies to show that all of the secreted proteins carry glycans. The presence of complex glycans on secretory proteins indicates that they are passing through the Golgi complex on the way to the extracellular compartment. The sodium ionophore, monensin, did not block the transport of proteins to the extracellular medium, even though monensin efficiently inhibited the Golgi-mediated processing of complex glycans. The inhibition of N-glycosylation by tunicamycin reduced by 76% to 84% the accumulation of newly synthesized (i.e. radioactively labeled) protein that was secreted by the sycamore cells, while cytoplasmic protein biosynthesis was not affected by this antibiotic. However, in the presence of glycoprotein-processing inhibitors, such as castanospermine and deoxymannojirimycin, the formation of complex glycans was prevented but glycoprotein secretion was unchanged. These results support the conclusion that N-linked glycan processing is not necessary for sorting, but glycosylation is required for accumulation of secreted proteins in the extracellular compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号