首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamics and/or order of the hydrophobic part of phosphatidylcholine (PC) liposomes and rat brain total lipid (TL) liposomes and synaptosomes were studied and compared by EPR spectroscopy using the spin probes 5 or 16-doxyl stearic acid and 14-doxyl phosphatidylcholine. The dynamics and/or order of the hydrophobic part of TL liposomes or synaptosomes were similar but differed largely from those of PC liposomes. The dynamics of the hydrophobic part of the liposomes decreased gradually with the increasing TL/PC ratio in the sample. To obtain in TL liposomes or synaptosomes the same EPR spectrum parameters as in PC liposomes at 37 degrees C, the formers have to be heated to temperatures of approximately 50-60 degrees C. The dynamics and/or order of the hydrophobic part of lecithin liposomes at 5-10 degrees C were comparable with those of TL liposomes or synaptosomes at 37 degrees C. The results emphasize the role of the lipid composition in studies concerning drug-lipid and protein-lipid interactions in model and biological membranes.  相似文献   

2.
Diheptanoyl phosphatidylcholine (DHPC) was reported to reduce inward sodium current in squid giant axons (Hendry et al., Biophys. J., 47, (1985) 841) and to decrease the frequency of the nicotinic acetylcholine-activated ion channel (Braun and Haydon, Pfügers Arch., 62, (1991) 418). To understand the DHPC effects, an influence of DHPC to increase dynamics/disorder (perturbation effect) in liposomes prepared from rat brain total lipids was studied at the 5th, 12th and 16th carbon membrane depths using the method of EPR spectroscopy of the spin labelled stearic acids and 1-palmitoyl-2-stearoyl phosphatidylcholines. The perturbation efficiency of DHPC in the liposomes was quantitated with the initial slope value of the order parameter S or inner splitting Amin versus DHPC concentration. DHPC at the DHPC/total lipid molar ratio of 1:10, 1:5, 1:3 and 1:2 increased dynamics/disorder of the liposomes. When the perturbation effect, compared at temperature scale, was normalized to 1 at the 5th carbon depth, the relative perturbation effect of DHPC was 1, 4.2, and 6.9 at the 5th, 12th and the 16th carbon depth, respectively, as detected by spin labelled stearic acids. Using the spin labelled lipids the perturbation effect was 1, 1.9 and 2.3, respectively. The differences of the perturbation effect of DHPC at different membrane depths correspond to the published perturbation effect of the local anesthetics lidocaine, tetracaine, dibucaine, heptacaine, IR-9 and carbisocaine on total lipid liposomes. The comparable perturbation properties of DHPC and of the local anesthetics support the hypothesis that the membrane perturbation caused by DHPC may play an important role in its effect on membrane function.  相似文献   

3.
The electron spin resonance spectra of 16-doxyl stearic acid (16-SA) incorporated into synaptosomes mostly showed a fluid lipid component and a minor motionally-restricted component (MRC) of the molar fraction of 10-20%, measured at 0 degree C. At 10 mmol/l concentration, thioridazine (TRZ), chlorpromazine (CPZ), chlorprothixene (CPT), perphenazine (PFZ) and levopromazine (LPZ) raised the MRC molar fraction in the synaptosomes to 100, 92, 65, 41 and 39%, respectively (as detected by the spin probe at 0 degrees C). At 4% concentration, TRZ, CPZ, CPT, PFZ, and LPZ the respective MRC percentages were 100, 75, 41, 24 and 17%. In synaptosomal membranes, AMRC splitting values of MRC, induced by TRZ and CPZ, were similar to those of the probe in human serum albumin. MRC induced by CPZ and TRZ was constant (+/- 15%) within the temperature range from 0 to 30 degrees C. At drug/lipid ratios > or = 2 : 1, TRZ and CPZ formed rigid complexes with total lipids isolated from the rat brain. The complexes melted upon increasing the temperature of the samples over 10-20 degrees C. The drugs decreased the lipid concentrations in synaptosomes in the order of potency TRZ > CPZ > CPT > PFZ > or = LPZ; this was similar to their effect on MRC increase. The drugs tested increased the membrane dynamics/disordering, and their potency fairly correlated with their MRC increasing effects. It is supposed that the drug-induced 16-SA probe MRC increase in synaptosomes was a result of mainly decreased lipid/protein ratio in the synaptosomal membranes, which in turn probably is connected with perturbation of lipid-protein interactions and/or membrane proteins. The perturbation of lipid-protein interactions and/or membrane proteins may be connected with the drug perturbation effect on the bulk lipid membrane part.  相似文献   

4.
Changes in molecular arrangement of membrane phospholipids in the course of lipid autoxidation were studied by means of broad-band 31-P NMR spectroscopy. Multilamellar liposomes prepared from egg yolk phosphatidylcholine (PC) or total lipid extracts from rat brains (TL) were used as models. The initial lamellar arrangement of phospholipids of both types changed as lipid peroxidation proceeded and a narrow isotropic signal appeared in the spectra at 0 ppm, this phenomenon being more prominent for TL than for PC. Probably the isotropic signal represents some nonlamellar structures within the membranes of peroxidized lipids.  相似文献   

5.
The effects of phospholipid-oxidation state and vesicle composition on lipid peroxidation in hemolysate-containing liposomes (hemosomes) were studied by the thiobarbituric acid assay. Liposomes (hemosomes) were prepared from egg phosphatidylcholine (PC) with either low (PC0.08) or high (PC0.66) oxidation indices reflecting low and high conjugated diene/lipid hydroperoxy contents. Thiobarbituric acid reactivity was negligible over 6 h at 38 degrees C in buffer-containing (control) liposomes prepared from PC0.08, whereas it was slightly increased in those prepared from PC0.66. Encapsulated hemolysate had no effect in PC0.08 liposomes, but significantly increased thiobarbituric acid reactivity in those prepared from PC0.66. Inclusion of either phosphatidylethanolamine or phosphatidylinositol in the membrane further increased lipid peroxidation in hemosomes prepared from PC0.66, whereas phosphatidic acid and phosphatidylserine were inhibitory. Inclusion of cholesterol in the membrane had no effect in PC0.66 hemosomes, but significantly inhibited lipid peroxidation in the presence of phosphatidylethanolamine or phosphatidylinositol. The effects of phosphatidic acid and cholesterol were dose-dependent. Co-incorporation of cholesterol and phosphatidic acid or phosphatidylserine in the membrane resulted in almost complete elimination of hemoglobin (Hb)-induced lipid peroxidation. Lysophosphatidic acid had similar effect as phosphatidic acid, whereas lysophosphatidylserine exerted inhibition only in the presence of phosphatidylethanolamine. The rate of lipid peroxidation showed no correlation with the amount of encapsulated Hb, neither with the oxidation indices nor the polyunsaturated fatty acid contents of negatively charged phospholipids. The above findings suggest a possible role for the high cholesterol content and preferential localization of phosphatidylserine in the inner bilayer leaflet of erythrocyte membrane in protecting against Hb-induced lipid peroxidation in the membrane.  相似文献   

6.
The membrane disordering efficiency of four local anesthetics, including lidocaine, tetracaine, dibucaine and heptacaine (piperidinoethyl ester of 2-heptyloxyphenylcarbamic acid) has been studied by spin-labeling methods. The disordering efficiency of the drugs in rat total brain lipid liposomes was quantitated with the initial slope value of the order parameter versus drug concentration curve, the so-called change-in-order parameter value. Using the positional isomers of m-doxyl stearic acids (m = 5, 12 and 16), it has been demonstrated that the tested drugs reveal quite different disordering efficiency. There is a clear tendency of increasing disordering efficiency towards the methyl terminal of the lipid acyl chains. By a comparison of order parameter versus drug concentration and temperature at three depths of rat brain total lipid liposomes and synaptosomes, it is shown that the ‘fluidizing effect’ of local anesthetics does not correspond to fluidization of membrane by temperature and that tetracaine and dibucaine do not have equal disordering efficiency as judged by their solubility in the membrane. The disordering efficiency of these drugs on the hydrocarbone core of a membrane qualitatively corresponds to their anesthetic potency. Similar results were obtained in liposomes and synaptosomes. It is assumed that there is a similar incorporation of the local anesthetics in the liposomes and in the lipid part of synaptosomes.  相似文献   

7.
Five potential beta-adrenoceptor blocking (BAB) compounds, alkylesters of 4-[(2-hydroxy-3-alkylamino)propoxy] phenylcarbamic acid, and eight calcium channel blockers (CB), i.e. nifedipine, nimodipine, niludipine, nitrendipine, verapamil, gallopamil, mepamil and diltiazem, were compared as to their inhibitory effect on thrombin induced aggregation of washed rat platelets and their effect on dynamics/disorder of liposomal membranes prepared from platelet lipids, studied by EPR spectroscopy of a lipid spin probe. The anti-aggregatory potency of the BAB and CB drugs was effective within the concentration range of 0.01-1 mmol/l. The antiaggregatory potency of BAB increased in the order BL-143 < BL-243 < BL-343 < BL-443 < BL-543 and among the CB, nifedipine and diltiazem were least potent, whereas nitrendipine and mepamil were the most potent drugs. The potency of the other CB tested was intermediate. The BAB drugs increased the dynamics/disorder of the liposomes in the same order as they inhibited platelet aggregation, whereas there was no relationship between antiaggregatory effect of CB and their influence on dynamics/disorder of the liposomes. Nifedipine, nimodipine, niludipine and nitrendipine had a minor perturbation effect on the liposomes, whereas verapamil, mepamil, gallopamil and diltiazem pronouncedly increased the dynamics/disorder of the hydrophobic part of the liposomes. The results indicate that the anti-aggregatory activity of BAB drugs may be mediated, at least partially, through their perturbation effect on the lipid part of biological membranes.  相似文献   

8.
Doxyl stearate spin probes which differed in the attachment of the nitroxide free radical to the fatty acid have been used to study membrane fluidity in ozone-treated bovine erythrocytes and liposomes. Analysis of EPR spectra of spin labels incorporated into lipid bilayer of the erythrocyte membranes indicates an increase in the mobility and decrease in the order of membrane lipids. In isolated erythrocyte membranes (ghosts) the most significant changes were observed for 16-doxylstearic acid. In intact erythrocytes statistically significant were differences for 5-doxylstearic acid. The effect of ozone on liposomes prepared from a lipid extract of erythrocyte lipids was marked in the membrane microenvironment sampled by all spin probes. Ozone apparently leads to alterations of membrane dynamics and structure but does not cause increased rigidity of the membrane.  相似文献   

9.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

10.
Scientific evidence indicates that exogenous phospholipids in the form of liposomes can affect cell growth. Effects of liposomes on cell growth depend on several factors including composition of liposomes, lipid concentration, and type of cells studied. Because phagocytic cells such as monocytes and macrophages are natural targets of liposomes, intracellular delivery of drugs to modulate cellular activity of these cells is of interest. We explored the effects of phospholipid-based liposomes composed of soy bean phosphatidylcholine (PC) as the main lipid component on U-937 cell growth. Effects of charge-imposing lipids and cholesterol were also studied. In addition, we investigated whether phospholipid-based liposomes would exert any interaction on cell growth with propylthiouracil, a drug with known antiproliferative activity. We found that PC in the form of extruded liposomes had intrinsic antiproliferative activity on U-937 cells at concentrations of 200 microM and up without any appreciable cytotoxicity. Phosphatidylserine and phosphatidylglycerol, but not dicetlylphosphate, at 10 mol% increased growth retardation activity of PC liposomes. Cholesterol at 30 mol% did not have any effect on cell growth, except for liposomes composed of PC and phosphatidylserine, where growth retardation was negated in the presence of cholesterol. Synergistic effect on cell growth was seen with certain liposome compositions when 5.5 microg/mL of propylthiouracil was coincubated. The results of this study suggest that the effects of exogenous lipids on cell growth should be taken into consideration when PC-based liposomes are to be used as drug delivery systems, especially when the targets are cells with phagocytic activity.  相似文献   

11.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

13.
We examined alterations of lipid constituents induced by hybrid liposomes (HLs) in cancer cells. As early as 1h after HL treatment, amounts of the raft/caveolae lipids sphingomyelin, ceramide, and ether-type PC were altered. In addition, the structures of caveolae on the cytoplasmic surface of the cell membrane were significantly changed. Our results suggest that alterations of lipid composition in caveolae mediate HL signaling for apoptosis.  相似文献   

14.
Membrane lipid peroxidation (LPO) induced by hydroxyl (*OH) and ascorbyl (*Asc) radicals and by peroxynitrite (ONOO-) was investigated in asolectin (ASO), egg phosphatidylcholine (PC) and PC/phosphatidic acid mixtures (PC:PA) liposomes and rat liver microsomes (MC). Enthalpy variation (DeltaH) of PC:PA at different molar ratios were obtained by differential scanning calorimetry. It was also evaluated the LPO inhibition by quercetin, melatonin and Vitamin B6. The oxidant effect power follows the order *OH approximately *Asc > ONOO- on PC and MC; whilst on ASO liposomes, it follows *Asc > *OH approximately ONOO-. Increasing amounts of PA in PC liposomes resulted in lower levels of LPO. The DeltaH values indicate a more ordered membrane arrangement as a function of PA amount. The results were discussed in order to provide a complete view involving the influence of membranes, oxidants and antioxidants intrinsic behavior on the LPO dynamics.  相似文献   

15.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

16.
T Nomura  K Kurihara 《Biochemistry》1987,26(19):6141-6145
In a previous paper [Nomura, T., & Kurihara, K. (1987) Biochemistry (preceding paper in this issue)], we showed that azolectin liposomes are depolarized by various odorants and there is a good correlation between the responses in the liposomes and the frog or porcine olfactory responses. In this study, we examined effects of changed lipid composition on responses of liposomes to various odorants. The membrane potential changes in response to odorants were monitored with the fluorescent dye 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. Egg phosphatidylcholine (PC) liposomes showed depolarizing responses to nine odorants among ten odorants tested. The magnitudes of depolarization by alcohols were similar to those in azolectin liposomes, but those by other odorants were much less than those in azolectin liposomes. Addition of sphingomyelin (SM) to PC led to an increase in the magnitude of depolarization by most odorants. Addition of phosphatidylethanolamine (PE) to PC (PE/PC = 0.25) led to depolarizing responses to four odorants among six odorants tested, and a further increase in PE content (PE/PC = 0.54) led to depolarizing responses only to two odorants. Addition of SM to the lipids of this composition of PC and PE [SM/(PC + PE) = 0.22] led to depolarizing responses to four odorants again. Liposomes made of a mixture of SM, PE, and PC exhibited depolarizing responses to four odorants tested, and addition of cholesterol to the lipids [cholesterol/(PC + PE + SM) = 0.05 and 0.11] led to depolarizing responses only to two and one odorant, respectively. Thus, changes in lipid composition of liposomes led to great changes in specificity of the responses to odorants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bilayer lipid phosphatidylcholine (PC), analyzed on their miscibility, and fused with membrane vesicles from L. lactis. Freeze-fracture electron microscopy demonstrates that the bipolar lipids in the hybrid membranes adopted a monomolecular organization at high S. acidocaldarius lipid content. Leucine transport activity (i.e., delta mu H(+)-driven and counterflow uptake) increased with the content of S. acidocaldarius lipids and was optimal at a one-to-one (w/w) ratio of PC to S. acidocaldarius lipids. Membrane fluidity decreased with increasing S. acidocaldarius lipid content. These data suggest that transport proteins can be functionally reconstituted into membranes composed of membrane-spanning lipids provided that membrane viscosity is restricted.  相似文献   

18.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

19.
The mechanism of membrane disturbance by aminoglycoside antibiotics was investigated in liposomes containing the fluorescent probe, 1-anilino-8-naphthalene sulfonate (ANS). Liposomes of PC and different anionic phospholipids (1:1 to 15:1 molar ratios) were challenged with aminoglycosides in the presence of low (1 microM) and high (3 mM) concentrations of calcium. Liposomes containing PIP2 showed the greatest drug-induced changes in ANS fluorescence in the presence of high and low concentrations of calcium and at all PC:PIP2 molar ratios tested. Liposomes containing other anionic phospholipids (PS, PI and PIP) were not reactive toward aminoglycosides in the presence of 3 mM calcium or when the ratio of PC to anionic lipid was increased to 10:1. The aminoglycoside-induced changes of ANS fluorescence were not due to any changes in the emission spectrum of ANS, nor to changes in quantum yield, nor to a change in the binding affinity of ANS. It is concluded that a specific aminoglycoside-PIP2 interaction results in phase separation of PC and PIP2 and thus increases the number of available ANS binding sites in PC:PIP2 liposomes.  相似文献   

20.
The optimal conditions for preparations of rifampicin-containing liposomes were determined with the methods of mechanical shaking, gas dispersion and and reversible phases. It was found that the percentage of rifampicin incorporation into liposomes depended on the molar ratio of the antibiotic to the lipid (the optimal ratio was 1 : 10), the size and structure of liposomes, the amount of cholesterol added and the lipid membrane charge. Incorporation of rifampicin amounted to 16.1 +/- 2.4, 39.2 +/- 3.2 and 60.5 +/- 2.9 per cent with respect to neutral lecithin multilamellar liposes, liposomes prepared with the gas dispersion method and liposomes prepared with the method of reversible phases, respectively. Cholesterol in a molar ratio to lecithin equal to 2 : 5 or higher and dicetyl phosphate imparting the negative charge to the membrane had an inhibitory effect on the drug uptake by liposomes, while stearyl amine having the positive charge had a stimulating effect. The effect of the cryoprotectors glucose, polyvinylpyrrolidone, poly-ethylene glycole-400 and glycerol on low-temperature preservation and storage of rifampicin-containing liposomes was studied. It was shown that 10--15 per cent solutions of sucrose and glucose had the highest cryoprotective effect, when the two-stage method of freezing was used. It provided almost 84 per cent preservation of liposomal rifampicin. Electron microscopy showed that after defrosting liposomes no significant changes in the size and structure of lipid membranes were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号