首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

3.
The CO2 response of the phrenic neurogram before and during CO-induced isocapnic brain hypoxia was studied in peripherally chemodenervated, vagotomized, paralyzed, ventilated cats with blood pressure held constant. During inhalation of 0.5% CO in 40% O2, arterial O2 content (CaO2) was reduced to 40% and minute phrenic activity to 38.4 +/- 9.4% (SE; n = 9) of prehypoxic levels, primarily due to depression of peak phrenic amplitude (PP). CO2 response, defined as the slope of the plot of PP vs. end-tidal PCO2 during CO2 rebreathing, was unaffected by phrenic depression even to the point of total suppression of phrenic activity in two cats. The effect of the tissue metabolic acidosis associated with hypoxia on phrenic CO2 sensitivity was assessed in a separate group of cats by blocking lactate formation during hypoxia with dichloroacetate (DCA). Preventing lactic acidosis during hypoxia did not affect the CO2 response of the phrenic activity during hypoxia. We conclude that 1) hypoxic depression does not limit the ability of central respiratory neurons to respond to CO2, and 2) the failure of DCA to affect the CO2 response of the phrenic neurogram suggests that brain intracellular lactic acidosis does not modify the phrenic response to hypercapnia.  相似文献   

4.
In awake animals, our laboratory recently showed that the hypoxic ventilatory response of adult male (but not female) rats previously subjected to neonatal maternal separation (NMS) is 25% greater than controls (Genest SE, Gulemetova R, Laforest S, Drolet G, and Kinkead R. J Physiol 554: 543-557, 2004). To begin mechanistic investigations of the effects of this neonatal stress on respiratory control development, we tested the hypothesis that, in male rats, NMS enhances central integration of carotid body chemoafferent signals. Experiments were performed on two groups of adult male rats. Pups subjected to NMS were placed in a temperature-controlled incubator 3 h/day from postnatal day 3 to postnatal day 12. Control pups were undisturbed. At adulthood (8-10 wk), rats were anesthetized (urethane; 1.6 g/kg), paralyzed, and ventilated with a hyperoxic gas mixture [inspired O2 fraction (Fi(O2)) = 0.5], and phrenic nerve activity was recorded. The first series of experiments aimed to demonstrate that NMS-related enhancement of the inspiratory motor output (phrenic) response to hypoxia occurs in anesthetized animals also. In this series, rats were exposed to moderate, followed by severe, isocapnic hypoxia (Fi(O2) = 0.12 and 0.08, respectively, 5 min each). NMS enhanced both the frequency and amplitude components of the phrenic response to hypoxia relative to controls, thereby validating the use of this approach. In a second series of experiments, NMS increased the amplitude (but not the frequency) response to unilateral carotid sinus nerve stimulation (stimulation frequency range: 0.5-33 Hz). We conclude that enhancement of central integration of carotid body afferent signal contributes to the larger hypoxic ventilatory response observed in NMS rats.  相似文献   

5.
Abstract: We applied reverse microdialysis and HPLC analysis to evaluate the participation of noradrenergic neurotransmission in modulation of the baroreceptor reflex response by substance P at the nucleus tractus solitarii in Sprague-Dawley rats anesthetized with pentobarbital sodium (50 mg/kg, i.p., with 20 mg/kg/h.i.v. supplement). Continuous infusion of substance P (600 µ M ) at 1 µl/min into the nucleus tractus solitarii through a stereo-taxically positioned microdialysis probe (active exchange length, 180–200 µm; diameter, 220 µm) for 1 h elicited an enhancement of the baroreceptor reflex response. This facilitatory effect correlated positively, during the 60-min infusion period, with the time course of increase in the extracellular concentration of substance P and noradrenaline in the nucleus tractus solitarii. Experimentally elevating the concentration of noradrenaline at this medullary nucleus also augmented the baroreceptor reflex sensitivity. On the other hand, depletion of the noradrenergic fibers and nerve terminals at the nucleus tractus solitarii with DSP4 diminished the enhancement of baroreceptor reflex response and the corresponding elevation in extracellular concentration of noradrenaline by substance P. Microinfusion of noradrenaline into the nucleus tractus solitarii in DSP4-treated animals, however, potentiated the baroreceptor reflex response. These results suggest that the enhancement of baroreceptor reflex response by substance P may involve an increase in the concentration of noradrenaline at the nucleus tractus solitarii via a presynaptic mechanism.  相似文献   

6.
To investigate models of plasticity in respiratory motor output, we determined the effects of chronic unilateral phrenicotomy and/or exercise on time-dependent responses to episodic hypoxia in the contralateral phrenic nerve. Anesthetized (urethane), ventilated, and vagotomized rats were presented with three, 5-min episodes of isocapnic hypoxia (11% O(2)), separated by 5 min of hyperoxia (50% O(2)). Integrated phrenic (and hypoglossal) nerve discharge were recorded before and during each hypoxic episode, for the first 5 min after the first hypoxic episode, and at 30 and 60 min after the final episode. Of 36 rats, one-half were sedentary while the other one-half had free access to a running wheel; each of these groups was split into three subgroups: 1) unoperated, 2) chronic left phrenicotomy (27-37 days), and 3) sham operated. Neither unilateral phrenicotomy nor running wheel activity influenced the short-term hypoxic phrenic response (during hypoxia) or long-term facilitation (posthypoxia). Posthypoxia frequency decline was exaggerated in phrenicotomized-sedentary rats relative to unoperated-sedentary rats (change in burst frequency = -23+/-4 vs. -11 +/-5 bursts/min, respectively; 5 min posthypoxia; P<0.05), an effect that was eliminated by spontaneous exercise. The results indicate that neither voluntary running nor unilateral phrenicotomy has major effects on time-dependent hypoxic phrenic responses, with the exception of an unexpected effect of phrenicotomy on posthypoxia frequency decline in sedentary rats.  相似文献   

7.
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.  相似文献   

8.
The majority of vertebrates are not tolerant to hypoxia but epaulette sharks (Hemiscyllium ocellatum) living on shallow reef platforms appear to tolerate hypoxic periods during tidal fluctuations. The effects of progressive hypoxia on the metabolic and ventilatory responses of these elasmobranchs were examined in a closed respirometer. In order to determine whether repeated exposure to hypoxia primes these sharks to alter their metabolism, one group of sharks was exposed to repeated sub-lethal hypoxia, at 5% of air saturation, prior to respirometry. In response to falling oxygen concentration [O(2)], the epaulette shark increased its ventilatory rate and maintained its O(2) consumption rate (VO(2)) down to 2.2 mg O(2) l(-1) at 25 degrees C. This is the lowest critical [O(2)] ([O(2)](crit)) ever measured for any elasmobranch. After reaching the [O(2)](crit), the shark remained in the respirometer for a further 4-5 h of progressive hypoxia. Only after the [O(2)] fell to 1.0 mg l(-1) was there a decrease in the ventilatory rate followed by a rise in blood lactate levels, indicating that the epaulette shark responds to severe hypoxia by entering a phase of metabolic and ventilatory depression. Interestingly, hypoxia tolerance was dynamic because hypoxic pre-conditioning lowered the VO(2) of the epaulette shark by 29%, which resulted in a significantly reduced [O(2)](crit) (1.7 mg O(2) l(-1)), revealing that hypoxic pre-conditioning elicits an enhanced physiological response to hypoxia.  相似文献   

9.
To determine if depression of central respiratory output during progressive brain hypoxia (PBH) can be generalized to other brain stem outputs, we examined the effect of PBH on the tonic (tSCS) and inspiratory-synchronous (iSCS) components of preganglionic superior cervical sympathetic (SCS) nerve activity. Peak phrenic and SCS activity were measured in nine anesthetized, paralyzed, peripherally chemodenervated, vagotomized cats. PBH was produced by inhalation of 0.5% CO in 40% O2 while blood pressure and end-tidal CO2 were maintained constant. A progressive reduction in arterial O2 content from 14.3 +/- 0.6 to 4.5 +/- 0.3 vol% caused a 79 +/- 7% depression of peak phrenic activity and an 84 +/- 10% reduction of iSCS activity, but tSCS activity increased 42 +/- 21%. During CO2 rebreathing, iSCS activity increased in parallel with peak phrenic activity while tSCS activity was unchanged. The slopes of the CO2 responses of both phrenic (6.3 +/- 1.2%max/mmHg) and iSCS (4.6 +/- 0.8%max/mmHg) activity were unaffected by PBH. In four of nine hypocapnic and three of nine hypoxic studies, inspiratory activity in the SCS nerve was observed even after completely silencing the phrenic neurogram.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
GABA antagonism reverses hypoxic respiratory depression in the cat   总被引:1,自引:0,他引:1  
We assessed the role of gamma-aminobutyric acid (GABA) as a potential causative agent of hypoxic respiratory depression by monitoring the response of the phrenic neurogram to systemic infusion of the GABA antagonist bicuculline (0.01 mg.kg-1.min-1) under control conditions and during isocapnic brain hypoxia produced by CO inhalation in separate groups of anesthetized, glomectomized, vagotomized, paralyzed, and ventilated cats with blood pressure held constant. The maximum effect of bicuculline in subseizure doses in control cats was to increase minute phrenic activity to 151 +/- 14% of preinfusion values. Infusion was continued until seizure activity was seen in the electroencephalogram. A 53% decrease of arterial O2 content resulted in a marked reduction of both peak phrenic amplitude and phrenic firing frequency to 16 and 64% of control values, respectively. Infusion of bicuculline while the level of hypoxia was maintained constant restored both peak phrenic amplitude and phrenic firing frequency to prehypoxic levels. The maximum effect of bicuculline was to increase minute phrenic activity to 123 +/- 13% of the prehypoxic value. These results suggest that although GABA has only a modest role in determining the output of the control phrenic neurogram, a significant portion of the phrenic depression that occurs during hypoxia can be attributed to inhibition of respiratory neurons by GABA.  相似文献   

11.
Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia (n = 4, 21% O(2)) or acute hypoxia (12, 10, or 8% O(2); n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O(2) was similar whether arterial pressure was allowed to decrease (-13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ~75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O(2). Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.  相似文献   

12.
Hypoxia-induced dopamine (DA) release from carotid body (CB) glomus cells and activation of postsynaptic D(2) receptors have been proposed to play an important role in the neurotransmission process between the glomus cells and afferent nerve endings. To better resolve the role of D(2) receptors, we examined afferent nerve activity, catecholamine content and release, and ventilation of genetically engineered mice lacking D(2) receptors (D(2)(-/-) mice). Single-unit afferent nerve activities of D(2)(-/-) mice in vitro were significantly reduced by 45% and 25% compared with wild-type (WT) mice during superfusion with saline equilibrated with mild hypoxia (Po(2) approximately 50 Torr) or severe hypoxia (Po(2) approximately 20 Torr), respectively. Catecholamine release in D(2)(-/-) mice was enhanced by 125% in mild hypoxia and 75% in severe hypoxia compared with WT mice, and the rate of rise was increased in D(2)(-/-) mice. We conclude that CB transduction of hypoxia is still present in D(2)(-/-) mice, but the response magnitude is reduced. However, the ventilatory response to acute hypoxia is maintained, perhaps because of an enhanced processing of chemoreceptor input by brain stem respiratory nuclei.  相似文献   

13.
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.  相似文献   

14.
The effect of graded isocapnic hypoxia on the mass activity of the cervical sympathetic trunk and of the phrenic nerve was studied in sinoaortic-denervated, pentobarbital-anaesthetized cats. Under control conditions (normoxia, normocapnia) sympathetic discharge showed (i) a burst of action potentials synchronous with the phrenic nerve burst, which was selectively abolished by procedures suppressing inspiratory neuron activity (inspiration synchronous sympathetic activity, ISSA); and (ii) a lower level of sympathetic activity during expiration (tonic sympathetic activity, TSA). The effects of graded hypoxia on these two components of the sympathetic discharge were different. ISSA showed depression only, which began at inspired PO2 (Pinsp O2) of 58 +/- 10 (mean +/- SEM) mmHg (1 mmHg = 133.3 Pa), became progressively more marked as Pinsp O2 decreased further, and was paralleled by depression of phrenic nerve activity. Both ISSA and phrenic nerve activity were suppressed at Pinsp O2 of 46 +/- 9 mmHg. TSA increased progressively with the lowering of Pinsp O2, beginning at a Pinsp O2 significantly lower than that at which ISSA depression began (50 +/- 13 mmHg, p less than 0.01). In the range of Pinsp O2 values intermediate between the thresholds for ISSA depression and for TSA increase, some animals showed a depression of TSA that reversed to an increase as Pinsp O2 decreased further. During brief (duration 1.5 +/- 0.2 min) episodes of cerebral ischemia produced by occlusion of the brachiocephalic and left subclavian artery, the two components of sympathetic discharge showed responses similar to those observed in hypoxia, namely depression of ISSA as well as depression and enhancement of TSA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chronic exposure to hypoxia results in a time-dependent increase in ventilation called ventilatory acclimatization to hypoxia. Increased O(2) sensitivity of arterial chemoreceptors contributes to ventilatory acclimatization to hypoxia, but other mechanisms have also been hypothesized. We designed this experiment to determine whether central nervous system processing of peripheral chemoreceptor input is affected by chronic hypoxic exposure. The carotid sinus nerve was stimulated supramaximally at different frequencies (0.5-20 Hz, 0.2-ms duration) during recording of phrenic nerve activity in two groups of anesthetized, ventilated, vagotomized rats. In the chronically hypoxic group (7 days at 80 Torr inspired PO(2)), phrenic burst frequency (f(R), bursts/min) was significantly higher than in the normoxic control group with carotid sinus nerve stimulation frequencies >5 Hz. In the chronically hypoxic group, peak amplitude of integrated phrenic nerve activity ( integral Phr, percent baseline) or change in integral Phr was significantly greater at stimulation frequencies between 5 and 17 Hz, and minute phrenic activity ( integral Phr x f(R)) was significantly greater at stimulation frequencies >5 Hz. These experiments show that chronic hypoxia facilitates the translation of arterial chemoreceptor afferent input to ventilatory efferent output through a mechanism in the central nervous system.  相似文献   

16.
The purpose of this study was to examine our hypothesis that gamma-aminobutyric acid (GABA) in the nucleus tractus solitarii (NTS) may be related to the hypoxic ventilatory decline (HVD) and that chemoreceptor stimulation was essential to activate this mechanism. We used unanesthetized, freely moving rats in this study. An in vivo microdialysis technique was used to measure the extracellular GABA concentration ([GABA]o), and an in vivo microinjection technique was used to examine the effects of the GABA agonists and antagonists on the ventilation during hypoxia. The GABA agonists injected into the NTS attenuated the ventilation during hypoxia. By hypoxic exposure, [GABA]o was increased during the HVD. However, by carotid body denervation (CBD), this GABA increase was abolished. Although GABA antagonists microinjected into the NTS during the HVD phase significantly increased the depressed ventilation, this effect on the ventilation was abolished by CBD. These results suggest that the GABA in the NTS has a pivotal role in the HVD and that this mechanism is not activated without chemoreceptor stimulation.  相似文献   

17.
Excitatory effects of adenosine and ATP on carotid body (CB) chemoreception have been previously described. Our hypothesis is that both ATP and adenosine are the key neurotransmitters responsible for the hypoxic chemotransmission in the CB sensory synapse, their relative contribution depending on the intensity of hypoxic challenge. To test this hypothesis we measured carotid sinus nerve (CSN) activity in response to moderate and intense hypoxic stimuli (7 and 0% O(2)) in the absence and in the presence of adenosine and ATP receptor antagonists. Additionally, we quantified the release of adenosine and ATP in normoxia (21% O(2)) and in response to hypoxias of different intensities (10, 5, and 2% O(2)) to study the release pathways. We found that ZM241385, an A(2) antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 30.8 and 72.5%, respectively. Suramin, a P(2)X antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 64.3 and 17.1%, respectively. Simultaneous application of both antagonists strongly inhibited CSN discharges elicited by both hypoxic intensities. ATP release by CB increased in parallel to hypoxia intensity while adenosine release increased preferably in response to mild hypoxia. We have also found that the lower the O(2) levels are, the higher is the percentage of adenosine produced from extracellular catabolism of ATP. Our results demonstrate that ATP and adenosine are key neurotransmitters involved in hypoxic CB chemotransduction, with a more relevant contribution of adenosine during mild hypoxia, while vesicular ATP release constitutes the preferential origin of extracellular adenosine in high-intensity hypoxia.  相似文献   

18.
Microinjection of angiotensin II into the nucleus tractus solitarii attenuates the baroreceptor reflex-mediated bradycardia by inhibiting both vagal and cardiac sympathetic components. However, it is not known whether the baroreflex modulation of other sympathetic outputs (i.e., noncardiac) also are inhibited by exogenous angiotensin II (ANG II) in nucleus tractus solitarii (NTS). In this study, we determined whether there was a difference in the baroreflex sensitivity of sympathetic outflows at the thoracic and lumbar levels of the sympathetic chain following exogenous delivery of ANG II into the NTS. Experiments were performed in two types of in situ arterially perfused decerebrate rat preparations. Sympathetic nerve activity was recorded from the inferior cardiac nerve, the midthoracic sympathetic chain, or the lower thoracic-lumbar sympathetic chain. Increases in perfusion pressure produced a reflex bradycardia and sympathoinhibition. Microinjection of ANG II (500 fmol) into the NTS attenuated the reflex bradycardia (57% attenuation, P < 0.01) and sympathoinhibition of both the inferior cardiac nerve (26% attenuation, P < 0.05) and midthoracic sympathetic chain (37% attenuation, P < 0.05) but not the lower thoracic-lumbar chain (P = 0.56). We conclude that ANG II in the nucleus tractus solitarii selectively inhibits baroreflex responses in specific sympathetic outflows, possibly dependent on the target organ innervated.  相似文献   

19.
In response to moderate hypoxia many newborn animals are capable of increasing ventilation only transiently. To examine the hypothesis that changes in brain stem extracellular fluid (ECF) pH explain this transient ventilatory response, we measured brain stem ECF pH and respiratory drive during hypoxia in newborn pigs. The animals were anesthetized with alpha-chloralose-urethan, paralyzed, vagotomized, and mechanically ventilated with a servo-controlled ventilator to regulate end-tidal CO2. Hypoxic ventilation for 6 min was achieved by changing inspired gas from 100% to 10-15% O2. Respiration, measured as integrated phrenic nerve activity, showed a range of responses. In 13 trials increased phrenic activity early in the hypoxic period was sustained or further augmented for the duration of the period. In contrast, in eight other trials phrenic activity increased and then declined. Regardless of the respiratory response, ECF pH (measured with a flat-surface electrode) increased slightly (0.009 +/- 0.002 U) during the first 2.5 min of hypoxia and then declined 0.061 +/- 0.017 U by the 6th min. This acidotic shift in ECF pH is inconsistent with the hypothesis that an alkalotic shift causes the nonsustained respiratory response of newborn pigs.  相似文献   

20.
Catecholamine and metabolite excretion was studied in the cat after 6 h of 7.5% O2 hypoxia. Norepinephrine (NE) release from sympathetic nervous endings was strongly activated, whereas epinephrine (E) excretion was only slightly increased. A noteworthy result was the increase of dopamine (DA) and its metabolites [3-methoxytyramine (MT); 3,4-dihydroxyphenylacetic acid (DOPAC)] in urine samples. This increased release does not seem to originate from the central nervous system, but rather from peripheral dopaminergic structures; available knowledge on peripheral DA suggests that the hypoxia-induced DA release might be partly related to chemosensory or renal function. Indeed, in addition to enhanced DA and NE excretion, we observed an increase in sodium excretion that correlated with both DA and NE. Analysis of free and conjugated urinary metabolites showed that only free NE and both free and conjugated normetanephrine were increased in urine after hypoxic stress. Among DA metabolites, conjugated DOPAC was the main DA metabolite in the basal state and after hypoxia. Both the free and the conjugated forms of DA, MT, and DOPAC were increased by hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号