首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best‐characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild‐type poplar hybrid Populus tremula × P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding γ‐glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild‐type plants; soil contamination significantly decreased biomass accumulation in both wild‐type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two‐dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild‐type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal‐contaminated field sites. Further experiments are required to test these assumptions.  相似文献   

2.
The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation‐induced genotoxicity was investigated via gain‐of‐functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast‐targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild‐type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV‐treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV‐C radiation, the dark‐grown E. coli RecA‐overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation‐induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV‐C radiation‐induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA‐overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.  相似文献   

3.
The abundances of chloroplasts in leaves on the main stems ofChenopodium album at different height levels were investigatedin relation to the photosynthetic capacity and light environmentof the leaves. (1) The number of chloroplasts per mesophyllcell decreased with descending position of leaves, except foryoung developing leaves at the top of plants that had smallerchloroplast numbers per cell than matured leaves beneath them.Contents of chlorophyll and ribulose-1,5-bisphosphate carboxylase/oxygenaseper leaf area that were highest in the topmost young leavesand decreased with decreasing height level indicate that thereis a vertical gradient of chloroplast abundance per leaf areadecreasing from the top of the leaf canopy with depth. (2) Light-saturatingrate of photosynthetic oxygen evolution per leaf area of maturedleaves decreased more steeply with decreasing leaf positionthan the chloroplast number per cell. Gradients of chlorophylland the enzyme protein contents were also steeper than thatof the chloroplast number. Loss of photosynthesis in lower leavesis, therefore, ascribed partly to loss of whole chloroplastsand partly to reduced photosynthetic capacities of the remainingchloroplasts. (3) The chloroplast number per cell in newly expandedsecond leaves was comparable to those in leaves that have developedat later stages of the plant growth but decreased graduallyduring leaf senescence both in the dark and light. The formationof the vertical gradient of chloroplast abundance is, therefore,ascribed to loss of whole chloroplasts during senescence ofleaves. (4) Irradiance a leaf receives decreased sharply fromthe top of the canopy with depth. The physiological or ecophysiologicalsignificance of the vertical distribution of chloroplasts amongleaves was discussed taking light environments of leaves intoconsideration. (Received July 31, 1995; Accepted October 20, 1995)  相似文献   

4.
Over‐expression of glutamine synthetase (GS, EC 6.3.1.2), a key enzyme in nitrogen assimilation, may be a reasonable approach to enhance plant nitrogen use efficiency. In this work phenotypic and biochemical characterizations of young transgenic poplars showing ectopic expression of a pine cytosolic GS transgene in photosynthetic tissue (Gallardo et al., Planta 210, 19–26, 1999) are presented. Analysis of 22 independent transgenic lines in a 6 month greenhouse study indicated that expression of the pine GS transgene affects early vegetative growth and leaf morphology. In comparison with non‐transgenic controls, transgenic trees exhibited significantly greater numbers of nodes and leaves (12%), and higher average leaf length and width resulting in an increase in leaf area (25%). Leaf shape was not altered. Transgenic poplars also exhibited increased GS activity (66%), chlorophyll content (33%) and protein content (21%). Plant height was correlated with GS content in young leaves, suggesting that GS can be considered a marker for vegetative growth. Molecular and kinetic characterization of GS isoforms in leaves indicated that poplar GS isoforms are similar to their counterparts in herbaceous plants. A new GS isoenzyme that displayed molecular and kinetic characteristics corresponding to the octomeric pine cytosolic GS1 was identified in the photosynthetic tissues of transgenic poplar leaves. These results indicate that enhanced growth and alterations in biochemistry during early growth are the consequence of transgene expression and assembly of pine GS1 subunits into a new functional holoenzyme in the cytosol of photosynthetic cells.  相似文献   

5.
J. R. Ellis  R. M. Leech 《Planta》1985,165(1):120-125
As part of an investigation into the control of chloroplast replication the number and size of chloroplasts in mesophyll cells was examined in relation to the size of the cells. In first leaves of Triticum aestivum L. and T. monococcum L. the number of chloroplasts in fully expanded mesophyll cells is positively correlated with the plan area of the cells. The linear relationship between chloroplast number per cell and cell plan area is also consistent over a fivefold range of cell size in isogenic diploid and tetraploid T. monococcum. In T. aestivum the chloroplast number per unit cell plan area varies among cells in relation to the size of the chloroplasts. Those cells containing chloroplasts with a relatively small face area have a correspondingly higher density of chloroplasts, and consequently, the total chloroplast area per unit cell plan area is very similar in all the cells. The results indicate that the proportion of the cell surface area covered by chloroplasts is precisely regulated, and that this is achieved during cell development by growth and replication of the chloroplasts.  相似文献   

6.
A wild-type poplar hybrid and two transgenic clones overexpressing a bacterial gamma-glutamylcysteine synthetase in the cytosol or in the chloroplasts were exposed to the chloroacetanilide herbicides acetochlor and metolachlor dispersed in the soil. The transformed poplars contained higher gamma-glutamylcysteine and glutathione (GSH) levels than wild-type plants and therefore it was supposed that they would have an elevated tolerance towards these herbicides, which are detoxified in GSH-dependent reactions. Phenotypically, the transgenic and wild-type plants did not differ. The growth and the biomass of all poplar lines were markedly reduced by the two chloroacetanilide herbicides. However, the decrease of shoot and root fresh weights caused by the herbicides was significantly smaller in the transgenic than in wild-type plants. In addition, the growth rate of poplars transformed in the cytosol was reduced to a significantly lesser extent than that of wild-type plants following herbicide treatments. The effects of the two herbicides were similar. Herbicide exposures markedly increased the levels of gamma-glutamylcysteine and GSH in leaves of each poplar line. The increase in the foliar amounts of these thiols was stronger in the transgenic lines than in the wild type, particularly in the upper leaves. Considerable GST activities were detected in leaves of all poplar plants. Exposure of poplars to chloroacetanilide herbicides resulted in a marked induction of GST activity in upper leaf positions but not in middle and lower leaves. The extent of enzyme induction did not differ significantly between transgenic and wild-type poplars. Although the results show that the transgenic poplar lines are good candidates for phytoremediation purposes, the further improvement of their detoxification capacity, preferably by transformation using genes encoding herbicide-specific GST isoenzymes, seems to be the most promising way to obtain plants suitable for practical application.  相似文献   

7.
8.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   

9.
The γ‐tocopherol methyltransferase (γ‐TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ‐TMT in regulating abiotic stress within chloroplasts. The At γ‐tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high‐level expression of γ‐TMT converted most of γ‐tocopherol to α‐tocopherol in transplastomic seeds (~10‐fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α‐tocopherol content in transplastomic TMT leaves increased up to 8.2‐fold and 2.4‐fold higher than wild‐type leaves. Likewise, under heavy metal stress, α‐tocopherol content in the TMT leaves increased up to 7.5‐fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3‐fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild‐type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α‐tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus.  相似文献   

10.
Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA‐deficient mutants of Arabidopsis (ga1‐3) and Oryza sativa (d18‐AD), accompanied by the reduced expression of several chloroplast division‐related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild‐type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time‐course analysis showed that cell expansion‐related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA‐treated ga1‐3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA‐response signaling mutants suggest that RGA and GAI are the major repressors regulating GA‐induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.  相似文献   

11.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

12.
13.
The cis‐unsaturated molecular species of phosphatidylglycerol (PG) in chloroplasts have been implicated in the chilling sensitivity of plants. Homozygous lines of transgenic tobacco (Nicotiana tabacum) that overexpressed the cDNA for glycerol‐3‐phosphate acyltransferase, a key enzyme in the determination of the extent of cis‐unsaturation of PG, were established from a chilling‐sensitive squash (Cucurbita moschata). In transgenic plants, the proportion of saturated plus trans‐monounsaturated molecular species of PG increased from 24 to 65%. However, this change did not affect the architecture of the chloroplasts. Chilling stress decreased the growth and biomass production of young seedlings of transgenic plants more severely than those of wild‐type plants, and this observation suggests that the changes in the proportion of cis‐unsaturated PG affected not only leaves but also developing plants. Chilling stress also damaged inflorescences. In particular, the abscission of flower buds and inflorescence meristems from transgenic plants occurred more frequently than that from wild‐type plants. Thus, it is likely that decreases in the proportion of cis‐unsaturated PG enhanced the sensitivity to chilling of reproductive organs.  相似文献   

14.
Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue‐light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf‐area basis. The same strategy might be used in other plant leaves grown under direct sunlight.  相似文献   

15.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

16.
Changes in net photosynthetic rate on a leaf area basis and anatomical properties during leaf development were studied in an evergreen broad‐leaved tree, Castanopsis sieboldii and an annual herb, Phaseolus vulgaris. In C. sieboldii, surface area of mesophyll cells facing the intercellular air spaces on a leaf area basis (Smes) was already considerable at the time of full leaf area expansion (FLE). However, surface area of chloroplasts facing the intercellular air spaces on a leaf area basis (Sc), and chlorophyll and Rubisco contents on a leaf area basis increased to attain their maximal values 15–40 d after FLE. In contrast, in P. vulgaris, chloroplast number on a leaf area basis, Sc and Smes at 10 d before FLE were two to three times greater than the steady‐state levels attained at around FLE. In C. sieboldii, the internal CO2 transfer conductance (gi) slightly increased for 10 d after FLE but then decreased toward the later stages. Limitation of photosynthesis by gi was only about 10% at FLE, but then increased to about 30% at around 40 d after FLE. The large limitation after FLE by gi was probably due to the decrease in CO2 concentration in the chloroplast caused by the increases in thickness of mesophyll cell walls and in Rubisco content per chloroplast surface area. These results clearly showed that: (1) in C. sieboldii, chloroplast development proceeded more slowly than mesophyll cell expansion and continued well after FLE, whereas in P. vulgaris these processes proceeded synchronously and were completed by FLE; (2) after FLE, photosynthesis in leaves of C. sieboldii was markedly limited by gi. From these results, it is suggested that, in the evergreen broad‐leaved trees, mechanical protection of mesophyll cells has priority over the efficient CO2 transfer and quick construction of the chloroplasts.  相似文献   

17.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

18.
Growth and mesostructure of the photosynthetic apparatus were studied in leaves of ten Triticum L. species. Plants with the Au genome were shown to develop larger leaf assimilation areas due to expanding areas of individual leaves and an increase in the absolute growth rate. Leaf and mesophyll thickness and mesophyll cell size decreased in the G-genome species. Leaf compactness, which depended on cell size and number per unit leaf area and leaf folding, determined the specific patterns of internal leaf organization in wheat species with diverse genotypes. These patterns did not affect cell plastid-to-cytoplasm ratio as shown by the stable indices of cell surface area/cell volume, cell surface area per chloroplast, and cell volume per chloroplast. The structural indices of leaf phototrophic tissues, mesophyll density, and mesophyll CO2 conductance in alloploids, as compared to diploid species, depended on both ploidy and genome constitution.  相似文献   

19.
Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号