首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations.  相似文献   

2.
Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.  相似文献   

3.
The emerging field of molecular ecology aims to improve the ecological predictability of transgenic crop plants. The most widely cultivated lines are Roundup-Ready plants, which are genetically modified to be resistant to the broad-spectrum herbicide glyphosate. Recent publications demonstrate two ecological effects that were not anticipated: the widespread emergence of glyphosate-resistant weed biotypes and the formation of a metabolic herbicidal residue. Both effects appear to be due to the increased use of glyphosate rather than the genetic modification in the transgenic crop plant. With one prominent exception, opinions collected from the literature point towards a certain degree of resistance mismanagement and an inadequate testing of the ecological effects of extensive glyphosate use.  相似文献   

4.
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.  相似文献   

5.
In Argentina, transgenic soybean crop (Roundup Ready, RR) has undergone a major expansion over the last 15 years, with the consequent increase of glyphosate applications, a broad-spectrum and post emergence herbicide. Soybean crops are inhabited by several arthropods. Eriopis connexa Germar (Coleoptera: Coccinelidae) is a predator associated to soybean soft-bodies pest and have a Neotropical distribution. Nowadays, it is being considered a potentially biological control agent in South America. The objectives of this work were to evaluate the side-effects of glyphosate on larvae (third instar) and adults of this predator. Commercial compound and the maximum registered concentrations for field use were employed: GlifoGlex 48 (48% glyphosate, 192 mg a.i./litre, Gleba Argentina S.A.). The exposure was by ingestion through the treated prey (Rophalosiphum padi) or by drinking treated water during 48 h for treatment of the adult. The herbicide solutions were prepared using distilled water as solvent. The bioassays were carried out in the laboratory under controlled conditions: 23 +/- 0.5 degrees C, 75 +/- 5% RH and 16:8 (L:D) of photoperiod. Development time, weight of pupae, adult emergence, pre-oviposition period, fecundity and fertility were evaluated as endpoints. Larvae from glyphosate treatment molted earlier than controls. In addition, the weight of pupae, longevity, fecundity and fertility were drastically reduced in treated organisms. The reductions were more drastic when the treatments were performed at the third larval stage than as adult. The reproduction capacity of the predator was the most affected parameter and could be related to a hormonal disruption by glyphosate in the treated organisms. This work can confirm the deleterious effects of this herbicide on beneficial organisms. Also, it agrees with prior studies carried out on other predators associated to soybean pest, such as Chrysoperla externa (Neuroptera: Chrysopidae) and Alpaida veniliae (Araneae: Araneidae).  相似文献   

6.
Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end‐joining (NHEJ) DNA repair pathways, we precisely introduced the best‐performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS‐edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T‐DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.  相似文献   

7.
Endophytic bacteria are ubiquitous in most plant species influencing the host fitness by disease suppression, contaminant degradation, and plant growth promotion. This endophytic bacterial community may be affected by crop management such as the use of chemical compounds. For instance, application of glyphosate herbicide is common mainly due to the use of glyphosate-resistant transgenic plants. In this case, the bacterial equilibrium in plant–endophyte interaction could be shifted because some microbial groups are able to use glyphosate as a source of energy and nutrients, whereas this herbicide may be toxic to other groups. Therefore, the aim of this work was to study cultivable and noncultivable endophytic bacterial populations from soybean (Glycine max) plants cultivated in soil with and without glyphosate application (pre-planting). The cultivable endophytic bacterial community recovered from soybean leaves, stems, and roots included Acinetobacter calcoaceticus, A. junii, Burkholderiasp., B. gladioli, Enterobacter sakazaki, Klebsiella pneumoniae, Pseudomonas oryzihabitans, P. straminea, Ralstonia pickettii,and Sphingomonassp. The DGGE (Denaturing Gradient Gel Electrophoresis) analysis from soybean roots revealed some groups not observed by isolation that were exclusive for plants cultivated in soil with pre-planting glyphosate application, such as Herbaspirillum sp., and other groups in plants that were cultivated in soil without glyphosate, such as Xanthomonas sp. and Stenotrophomonas maltophilia. Furthermore, only two bacterial species were recovered from soybean plants by glyphosate enrichment isolation. They were Pseudomonas oryzihabitans and Burkholderia gladioliwhich showed different sensibility profiles to the glyphosate. These results suggest that the application at pre-planting of the glyphosate herbicide may interfere with the endophytic bacterial communitys equilibrium. This community is composed of different species with the capacity for plant growth promotion and biological control that may be affected. However, the evaluation of this treatment in plant production should be carried out by long-term experiments in field conditions.  相似文献   

8.
Yu Q  Cairns A  Powles S 《Planta》2007,225(2):499-513
Glyphosate is the world’s most widely used herbicide. A potential substitute for glyphosate in some use patterns is the herbicide paraquat. Following many years of successful use, neither glyphosate nor paraquat could control a biotype of the widespread annual ryegrass (Lolium rigidum), and here the world’s first case of multiple resistance to glyphosate and paraquat is confirmed. Dose–response experiments established that the glyphosate rate causing 50% mortality (LD50) for the resistant (R) biotype is 14 times greater than for the susceptible (S) biotype. Similarly, the paraquat LD50 for the R biotype is 32 times greater than for the S biotype. Thus, based on the LD50 R/S ratio, this R biotype of L. rigidum is 14-fold resistant to glyphosate and 32-fold resistant to paraquat. This R biotype also has evolved resistance to the acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of paraquat resistance in this biotype was determined as restricted paraquat translocation. Resistance to ACCase-inhibiting herbicides was determined as due to an insensitive ACCase. Two mechanisms endowing glyphosate resistance were established: firstly, a point mutation in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, resulting in an amino acid substitution of proline to alanine at position 106; secondly, reduced glyphosate translocation was found in this R biotype, indicating a co-occurrence of two distinct glyphosate resistance mechanisms within the R population. In total, this R biotype displays at least four co-existing resistance mechanisms, endowing multiple resistance to glyphosate, paraquat and ACCase herbicides. This alarming case in the history of herbicide resistance evolution represents a serious challenge for the sustainable use of the precious agrochemical resources such as glyphosate and paraquat.  相似文献   

9.
The use of herbicides to control weeds, particularly large invasions, has now become an essential management tool in many ecological restoration projects. The herbicide glyphosate is routinely used to control the invasive weed, Grey Willow (Salix cinerea), within New Zealand wetlands. However, little is known about the effects of glyphosate on invertebrates. We determine the short‐term effects of glyphosate on the abundance and composition of the nontarget canopy invertebrate community in wetlands invaded by Grey Willow in New Zealand. Initially, the application of glyphosate and a surfactant showed no detectable effect on the canopy invertebrates examined in this study. However, 27 days after herbicide application, significant Grey Willow canopy loss caused dramatic decreases in the abundance of invertebrates in the glyphosate‐treated plots compared with the unsprayed plots. Invertebrates appeared to be sensitive to changes in vegetation structure, such as canopy loss. These results agree with previous studies that have shown that the negative impacts of glyphosate on invertebrate communities are related to indirect effects via habitat modification as the herbicide‐treated vegetation dies. From a terrestrial invertebrate perspective, this study suggests that the use of glyphosate herbicide is suitable for the control of invasive weeds within wetland restoration projects as it appears to have negligible impact on the canopy invertebrate assemblage.  相似文献   

10.
Glyphosate applied to soils potentially affect microbial activity. A series of field and laboratory experiments assessed the effect of this herbicide on soil microorganisms. The aim of experiments was to evaluate the effect of glyphosate application on the soil microbial community structure, function and their activity. We studied "in vitro", changes in the microbial activity of typical Chernozem and Gleysol soils, with and without applied glyphosate. The herbicide was applied at a rate of 2, respectively 4 mg kg(-1) of soil and microbial activity were measured by fluorescein diacetate (FDA) hydrolysis. We found an increase of 9 to 13% in FDA hydrolyses in the presence of glyphosate in rate of 2 mg kg (-1) compared with the same type of soil which had never received herbicide. The double quantity of glyphosate decrease soil microbial activity; the amount of hydrolyzed fluorescein is lower than the addition of 2 ppm. The greater decrease was observed in the Gleysol type where the fluorescein hydrolyzed is with 4, 85% lower than version control without glyphosate. Chemical characters of soil, influence soil biological activity when herbicide is added. In Chemozem case, rich in humus, whose predominant micro flora is represented by actinomycetes through glyphosate treatment these organisms growths of as major producers of antibiotics actinomycetes determine an inhibitory effect on eubacteria and micromycetes growth, which is highlighted by estimating a relatively small number of them. After 10 days, once with decreasing of glyphosate content in soil, decreases the number of active actinomycetes, therefore we are witnessing to a numerical growth of bacterial population. In Gleysol type the indigenous micro flora is represented by eubacteria, so when the glyphosate is added it was registered a high growth of these organisms fraction.  相似文献   

11.
Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.  相似文献   

12.
The use of glyphosate‐based herbicides in agroecosystems has increased over the past few years because of the advent of genetically modified glyphosate‐resistant crops and resistant weeds. This is alarming because of potential damaging effects on non‐target organisms. In sub‐Saharan Africa, for example Ghana, many rural farmers have not received training in the use of glyphosate‐based herbicides, thus tend to apply higher than recommended concentrations on farms. Therefore, this study investigated the effect of glyphosate‐based herbicides on beneficial insects under laboratory conditions, using Apis mellifera L. (Hymenoptera: Apidae, Apini) and Hypotrigona ruspolii (Magretti) (Hymenoptera: Apidae, Meliponini) as models. The bees were put in contact for 24 h with the recommended concentration of Sunphosate 360 SL, a glyphosate‐based herbicide, 2× the recommended concentration, or distilled water as control. The effect of the herbicide on the bees was compared to the effect of a lambda‐cyhalothrin insecticide. Generally, more bees died after contact with plants freshly sprayed with the herbicide than on herbicide‐treated filter paper. In both cases, more bees died after contact with the higher concentration of the herbicide. These findings suggest that beneficial insects, specifically A. mellifera and H. ruspolii, may get killed if they are sprayed upon or come into contact with plants that have been freshly sprayed with (more than) the recommended concentration of glyphosate‐based herbicides. Therefore, it is important to restrict access and use of such herbicides to trained personnel who will comply with spraying guidelines, that is, recommended concentrations and timing of spray. Spraying at a time when insects are flying about may be detrimental to beneficial insects such as pollinator bees, parasitoids, and predators.  相似文献   

13.
The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.  相似文献   

14.
Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.  相似文献   

15.
Agricultural environments allow study of evolutionary change in plants. An example of evolution within agroecological systems is the selection for resistance to the herbicide glyphosate within the weed, Conyza canadensis. Changes in survivorship and reproduction associated with the development of glyphosate resistance (GR) may impact fitness and influence the frequency of occurrence of the GR trait. We hypothesized that site characteristics and history would affect the occurrence of GR C. canadensis in field margins. We surveyed GR occurrence in field margins and asked whether there were correlations between GR occurrence and location, crop rotation, GR crop trait rotation, crop type, use of tillage, and the diversity of herbicides used. In a field experiment, we hypothesized that there would be no difference in fitness between GR and glyphosate‐susceptible (GS) plants. We asked whether there were differences in survivorship, phenology, reproduction, and herbivory between 2 GR and 2 GS populations of C. canadensis in agrestal and ruderal habitats. We found that geographic location was an important factor in the occurrence of GR C. canadensis in field margins. Although not consistently associated with either glyphosate resistance or glyphosate susceptibility, there were differences in phenology, survivorship, and herbivory among biotypes of C. canadensis. We found equal or greater fitness in GR biotypes, compared to GS biotypes, and GR plants were present in field margins. Field margins or ruderal habitats may provide refugia for GR C. canadensis, allowing reproduction and further selection to occur as seeds recolonize the agrestal habitat. Agricultural practices may select for ecological changes that feed back into the evolution of plants in ruderal habitats.  相似文献   

16.
Silver catfish (Rhamdia quelen; Teleostei) were exposed to commercial formulation Roundup, a glyphosate herbicide: 0 (control), 0.2 or 0.4 mg/L for 96 h. Fish exposed to glyphosate showed an increase in hepatic glycogen, but a reduction in muscle glycogen at both concentrations tested. Glucose decreased in liver and increased in muscle of fish at both herbicide concentrations. Glyphosate exposure increased lactate levels in liver and white muscle at both concentrations. Protein levels increased in liver and decreased in white muscle while levels of ammonia in both tissues increased in fish at both glyphosate concentrations. Specific AChE activity was reduced in brain after treatments, no changes were observed in muscle tissue. Catalase activity in liver did not change during of exposure. Fish exposed to glyphosate demonstrated increased TBARS production in muscle tissue at both concentrations tested. For both glyphosate concentrations tested brain showed a reduction of TBARS after 96 h of exposure. The present results showed that in 96 h, glyphosate changed AChE activity, metabolic parameters and TBARS production. The parameters measured can be used as herbicide toxicity indicators considering environmentally relevant concentration.  相似文献   

17.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

18.
This review focuses on the genes for the enzymes 5-enolpyruvyl-3-phosphoshikimlc acid synthase (EPSPS) and the glyphosate oxidoreductase (GOX). These genes have been used to genetically engineer plants that are resistant to the herbicide glyphosate. Overproduction of glyphosate-insensitive.EPSPS in transgenic crops has been used to overcome the deleterious effuts of this herbicide. The introduction into plants of GOX also confers glyphosate tolerance to plants and augments the tolerance of transgenic plants already expressing a glyphosate tolerant EPSPS. These genes also provide a method for selecting transformed plant tissue using the glyphosate tolerance as the selectable marker in the presence of inhibitory concentrations of glypllosate. Glyphosate tolerant transgenic plants of beet, corn, cotton, lettuce, poplar, potato, rapeseed. soybean, tobacco, tomato, and wheat have already been field tested and are entering agriculture.  相似文献   

19.
The use of genetically modified varieties tolerant to herbicides (HT varieties) and resistant to insects (Bt varieties) in combination with application of a broad-spectrum herbicide such as glyphosate could be an effective option for the simultaneous control of weeds and pests in maize. Nevertheless, the possible impact of these tools on nontarget arthropods still needs to be evaluated. In a field study in central Spain, potential changes in populations of canopy-dwelling arthropods in Bt maize under different weed management options, including glyphosate application, were investigated. Canopy-dwelling arthropods were sampled by visual inspection and yellow sticky traps. The Bt variety had no effect on any group of studied arthropods, except for the expected case of corn borers—the target pests of Bt maize. Regarding the effects of herbicide regimes, the only observed difference was a lower abundance of Cicadellidae and Mymaridae on yellow sticky traps in plots not treated with pre-emergence herbicides. This effect was especially pronounced in a treatment involving two glyphosate applications. The decrease in Cicadellidae and Mymaridae populations was associated with a higher density of weeds in plots, which may have hindered colonization of the crop by leafhoppers. These differences, however, were only significant in the last year of the study. The low likelihood of the use of glyphosate- and herbicide-tolerant varieties for weed control triggering important effects on the nontarget arthropod fauna of the maize canopy is discussed.  相似文献   

20.
The herbicidal effect of glyphosate applied to gorse (Ulex europaeus L.) was improved by the addition of increasing amounts (0.5–20 g/litre) of Silwet L-77, an organosilicone surfactant. Increasing the rate of herbicide also enhanced control. There was a highly significant interaction between surfactant rate and herbicide dosage; as the amount of Silwet L-77 was increased the rate of glyphosate could be reduced without loss of herbicide efficacy. However, without any added organosilicone surfactant, glyphosate did not provide more than 73% control of gorse at any rate up to 6.5 kg a.i./ha. With the addition of Silwet L-77, complete mortality of all plants could be achieved with 2.2 kg glyphosate/ ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号