首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies (mAbs), electrophoresis, immunoblotting, and immunohistochemistry were used to determine the molecular properties of cardiac myosin heavy chain (MHC) isoforms and the regions of the developing chicken heart in which they were expressed. Adult atria expressed three electrophoretically distinct MHCs that reacted specifically with mAbs F18, F59, or S58. During embryonic Days 2-4, when the atrial and ventricular chambers are forming, MHCs that reacted with mAbs F18, F59, or S58 were expressed in both the atria and ventricles. The atria continued to express MHCs that reacted with mAbs F18, F59, or S58 at all stages of development and in the adult. In the ventricles, expression of the MHCs reacting with these mAbs was found to be developmentally regulated. By embryonic Day 16, MHC(s) reacting with mAb F18 had disappeared from the developing ventricles, whereas MHCs reacting with S58 and F59 continued to be expressed throughout the ventricles. As development continued, MHC(s) reacting with S58 in the ventricle became restricted to expression in only the ventricular conducting system. MHC(s) reacting with F59 were expressed in both the ventricular myocytes and the ventricular conducting system throughout development and in the adult. Thus, in contrast to the embryonic chicken heart where at least three MHC isoforms were expressed in both the atria and ventricles, we found in the adult chicken heart that-at a minimum-three MHC isoforms were expressed in the atria, two MHC isoforms were expressed in the ventricular conducting system, and one MHC isoform in the ventricular myocardium. MHC isoform expression in the developing avian heart appears to be more complex than previously recognized.  相似文献   

2.
Little is known regarding the role of androgenic hormones in the maintenance of myosin heavy chain (MHC) composition of rodent masticatory muscles. Because the masseter is the principal jaw closer in rodents, we felt it was important to characterize the influence of androgenic hormones on the MHC composition of the masseter. To determine the extent of sexual dimorphism in the phenotype of masseter muscle fibers of adult (10-mo-old) C57 mice, we stained tissue sections with antibodies specific to type IIa and IIb MHC isoforms. Females contain twice as many fibers containing the IIa MHC as males, and males contain twice as many fibers containing the IIb MHC as females. There is a modest amount of regionalization of MHC phenotypes in the mouse masseter. The rostral portions of the masseter are composed mostly of type IIa fibers, whereas the midsuperficial and caudal regions contain mostly type IIb fibers. Using immunoblots, we showed that castration results in an increase in the expression of type IIa MHC fibers in males. Ovariectomy has no effect on the fiber type composition in females. We conclude that testosterone plays a role in the maintenance of MHC expression in the adult male mouse masseter.  相似文献   

3.
4.
Three fast myosin heavy chains in adult rat skeletal muscle   总被引:12,自引:0,他引:12  
A B?r  D Pette 《FEBS letters》1988,235(1-2):153-155
A new fast myosin heavy chain isoform was electrophoretically detected in adult rat skeletal muscles. It was present at high levels in diaphragm and, therefore, designated as MHCIId. Appreciable amounts of MHCIId were detected in tongue musculature, the extraocular muscles, and in the deep red portions of various fast muscles. Its concentration in fast-twitch muscle was greatly increased by chronic stimulation.  相似文献   

5.
Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

6.
7.
A Maier  B Gambke  D Pette 《Histochemistry》1988,88(3-6):267-271
Serial cross sections of rat, rabbit and cat intrafusal fibers from muscle spindles of normal adult hindlimb muscles were incubated with a monoclonal antibody against embryonic myosin heavy chains. Intrafusal fiber types were identified by noting their staining patterns in adjacent sections incubated for myofibrillar ATPase after acid or alkaline preincubation. In rat and rabbit muscle spindles dynamic nuclear bag1 fibers reacted strongly at the polar and juxtaequatorial regions. Static nuclear bag2 fibers reacted weakly or not at all at the polar region, but showed a moderate amount of activity at the juxtaequator. At the equatorial region both types of nuclear bag fibers displayed a rim of fluorescence surrounding the nuclear bags, while the areas occupied by the nuclear bags themselves were negative. Nuclear chain fibers in rat and rabbit muscle spindles were unreactive with the specific antibody over their entire length. In cat muscle spindles both types of nuclear bag fibers presented profiles which resembled those of the nuclear bag fibers in the other two species, but unlike in rat and rabbit spindles, cat nuclear chain fibers reacted as strongly as dynamic nuclear bag1 fibers.  相似文献   

8.
Summary Serial cross sections of rat, rabbit and cat intrafusal fibers from muscle spindles of normal adult hindlimb muscles were incubated with a monoclonal antibody against embryonic myosin heavy chains. Intrafusal fiber types were identified by noting their staining patterns in adjacent sections incubated for myofibrillar ATPase after acid or alkaline preincubation. In rat and rabbit muscle spindles dynamic nuclear bag1 fibers reacted strongly at the polar and juxtaequatorial regions. Static nuclear bag2 fibers reacted weakly or not at all at the polar region, but showed a moderate amount of activity at the juxtaequator. At the equatorial region both types of nuclear bag fibers displayed a rim of fluorescence surrounding the nuclear bags, while the areas occupied by the nuclear bags themselves were negative. Nuclear chain fibers in rat and rabbit muscle spindles were unreactive with the specific antibody over their entire length. In cat muscle spindles both types of nuclear bag fibers presented profiles which resembled those of the nuclear bag fibers in the other two species, but unlike in rat and rabbit spindles, cat nuclear chain fibers reacted as strongly as dynamic nuclear bag1 fibers.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

9.
10.
11.
Summary Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

12.
Myosin isoforms contribute to the heterogeneity and adaptability of skeletal muscle fibers. Besides the well-characterized slow and fast muscle myosins, there are those isoforms that appear transiently during the course of muscle development. At a stage of development when two different myosins are coexpressed, the possibility arises for the existence of heterodimers, molecules containing two different heavy chains, or homodimers, molecules with two identical heavy chains. The question of whether neonatal and adult myosin isoforms can associate to form a stable heterodimer was addressed by using stage-specific monoclonal antibodies in conjunction with immunological and electron microscopic techniques. We find that independent of the ratio of adult to neonatal myosin, depending on the age of the animal, the myosin heavy chains form predominantly homodimeric molecules. The small amount of hybrid species present suggests that either the rod portion of the two heavy chain isoforms differs too much in sequence to form a stable alpha-helical coiled coil, or that the biosynthesis of the heavy chains precludes the formation of heterodimeric molecules.  相似文献   

13.
The 5'-flanking regions of the alpha- and beta-cardiac myosin heavy chain (MyHC) genes were excised from the cosmid human genomic clones using Hind III and Xbal for the alpha-MyHC gene, and the Hind III and Hind III sites for the beta-MyHC gene. These fragments were linked to chloramphenicol acetyl transferase (CAT) vector to generate a chimeric fusion gene. These fusion genes were subsequently transfected to neonatal rat cardiac cultured cells to analyze the CAT activity. The alpha-MyHC gene is preferentially expressed as compared to the beta-MyHC. In the presence of norepinephrine (NE) the beta-MyHC gene is remarkably induced (within 24 hours following the addition of norepinephrine to the cardiocyte culture). However, the alpha-MyHC is also induced. Specific alpha andrenergic antagonists such as terazosin (Tz) partially suppressed both the alpha- and beta-MyHC genes as revealed by the CAT activity. These findings suggest that catecholamine does activate the human cardiac MyHC genes but does not differentiate the specific expression of either the alpha- or beta-MyHC genes.  相似文献   

14.
15.
An antiserum specific to dog myocardial myosin has been developed against highly purified myosin heavy chains. The antiserum is specific for the heavy chains of myosin, giving a single precipitin line in an immunodiffusion assay for either the heavy chains of myosin or native myosin, and does not react with any other myocardial proteins. In such assays myosin acts as a single, uniform antigen. Using this antiserum, a radioimmunoassay has been developed to quantitate myosin in a homogenate of myocardial tissue containing free myosin dissociated from other cellular components.  相似文献   

16.
Vertebrate smooth muscle myosin heavy chains (MHCs) exist as two isoforms with molecular masses of 204 and 200 kDa (MHC204 and MHC200) that are generated from a single gene by alternative splicing of mRNA (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). A dimer of two MHCs associated with two pairs of myosin light chains forms a functional myosin molecule. To investigate the isoform composition of the MHCs in native myosin, antibodies specific for MHC204 were generated and used to immunoprecipitate purified bovine aortic smooth muscle myosin from a solution containing equal amounts of each isoform. MHC204 quantitatively removed from this mixture was completely free of MHC200. Immunoprecipitation of the supernatant with an antiserum that recognizes both isoforms equally well revealed that only MHC200 remained. We conclude that only homodimers of MHC204 and MHC200 exist under these conditions. A method is described for the purification of enzymatically active MHC204 and myosin on a protein G-agarose high performance liquid chromatography column containing immobilized MHC204 antibodies. We show, using an in vitro motility assay, that the movement of actin filaments by myosin containing 204-kDa heavy chains (0.435 +/- 0.115 microns/s) was not significantly different from that of myosin containing 200-kDa heavy chains (0.361 +/- 0.078 microns/s) or from myosin containing equal amounts of each heavy chain isoform (0.347 +/- 0.082 microns/s).  相似文献   

17.
Brief incubation of rabbit alveolar macrophages in medium containing 32Pi results in the incorporation of radioactivity into the 20 KD light chains and into the 220 KD heavy chains of myosin. Phosphorylation of the heavy chain is mediated by a kinase that is probably not myosin light chain kinase. Limited proteolysis of the phosphorylated myosin shows that radioactivity is associated with the rod portion of the heavy chain.  相似文献   

18.
Digastric muscle (DGM) is a powerful jaw-opening muscle that participates in chewing, swallowing, breathing, and speech. For better understanding of its contractile properties, five pairs of adult human DGMs were obtained from autopsies and processed with immunocytochemistry and/or immunoblotting. Monoclonal antibodies against alpha-cardiac, slow tonic, neonatal, and embryonic myosin heavy chain (MHC) isoforms were employed to determine whether the DGM fibers contain these MHC isoforms, which have previously been demonstrated in restricted specialized craniocervical skeletal muscles but have not been reported in normal adult human trunk and limb muscles. The results showed expression of all these MHC isoforms in adult human DGMs. About half of the fibers reacted positively to the antibody specific for the alpha-cardiac MHC isoform in DGMs, and the number of these fibers decreased with age. Slow tonic MHC isoform containing fibers accounted for 19% of the total fiber population. Both the alpha-cardiac and slow tonic MHC isoforms were found to coexist mainly with the slow twitch MHC isoform in a fiber. A few DGM fibers expressed the embryonic or neonatal MHC isoform. The findings suggest that human DGM fibers may be specialized to facilitate performance of complex motor behaviors in the upper airway and digestive tract.  相似文献   

19.
20.
Myosin heavy chain isoforms and enzyme activities were compared between the costal and crural regions of the rat diaphragm. The percentage of heavy chain (HC) IIb in the crural region of the diaphragm was significantly (P less than 0.05) higher than that in the costal region (mean 7.3 vs. 3.0%), and the percentage of HCI was significantly lower in the crural than in the costal diaphragm (22.7 vs. 27.9%). The distributions of HCIIa and HCIId were relatively homogeneous in both regions. Succinate dehydrogenase activity in the costal diaphragm was 21% greater (P less than 0.01) than in the crural diaphragm. In contrast, there was no significant difference in the activity of phosphofructokinase in the crural and costal diaphragms. These results demonstrate that a difference in myosin heavy chain isoforms and oxidative capacity exists between the costal and crural regions of the rat diaphragm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号