首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and dimethyl sulfide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxide. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 60% of the values obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O2 in conserving energy through electron transport-linked respiration.  相似文献   

2.
A combined foliar application of ethephon (2-chloroethylphosphonic acid) at 0.8 kg/ha and daminozide (butanedioic acid mono (2,2 dimethylhydrazide) at 3.2 kg/ha inhibited the vegetative growth of Black Valentine bean (Phaseolus vulgaris L.) without the leaf chlorosis and necrosis caused by ethephon alone. This antagonistic interaction was further evaluated by examining the effect of ethephon and daminozide on respiration and lipid synthesis of isolated leaf cells. Ethephon (1.0 mM) promoted14CO2 evolution from cells incubated with14C-glucose for 14 h by approximately 75%. Characterization of this response with Black Valentine bean mitochondria indicated that the observed stimulation could not be attributed to the existence of a major cyanide insensitive pathway or the possibility of ethephon acting as an uncoupler, which supports the view that ethephon (or ethylene) acts in the cytosol rather than in mitochondria. Daminozide at 30.0 and 60.0 mM inhibited14CO2 evolution of isolated cells by 30 and 70%, respectively. Ethephon in combination with daminozide (1.0+60 mM) resulted in a 32% inhibition of respiration. Daminozide (60.0 mM) inhibited the incorporation of14C-glucose into chloroform-methanol soluble products by 47%, but did not affect the incorporation of14C-acetate. The results suggest that daminozide may reduce or overcome any stimulatory effect of ethephon on respiration and support an active inhibitory site for daminozide in mitochondria.  相似文献   

3.
T.J. Kula  M.I.H. Aleem  David F. Wilson 《BBA》1982,680(2):142-151
(1) Cells of ThiobacillusA2 grown chemoautotrophically on thiosulfate or heterotrophically on succinate with oxygen contained b-, c-, o-, a- and a3-type cytochromes. The amount of cytochrome per mg of cell protein was much greater in thiosulfate-grown cells and differences in the relative concentrations of cytochromes were observed for the different growth conditions. (2) The half-reduction potentials at pH 7.0 (Em,7.0) and spectral maxima of c-, b-, a- and a3-type cytochromes were similar in cells grown aerobically with thiosulfate or with succinate as the growth substrate. (3) The half-reduction potential of the ‘invisible’, or high-potential copper, as determined from the potentiometric behavior of the carbon monoxide-reduced cytochrome a3 complex at pH 8.0, was 365 mV. (4) Reducing equivalents from thiosulfate appear to enter the respiratory chain at the cytochrome c level; however, studies in cell-free extracts were limited due to a loss in respiratory activity with thiosulfate as a substrate upon cell disruption.  相似文献   

4.
We have established the participation of a mobile redox pool in the respiratory chain of anaerobically grown bacterium Paracoccus denitrificans. In testing the kinetical homogeneity of the pool it was found that the ratio of fluxes of electron transport toward the terminal acceptors oxygen and nitrate was coincident for the respiratory substrates NADH and succinate; this provides evidence against the preferential link of one dehydrogenase with a distinct terminal enzyme through the separate pool of ubiquinone. The deviation from the expected behavior observed in comparing the titration of NADH oxidase and succinate oxidase with respiratory inhibitors such as mucidin (inhibitor in the bc1 region) or cyanide can be accounted for by the activation of succinate dehydrogenase upon the increase in the reduced state of respiratory components during the titration.  相似文献   

5.
It was found that the succinate oxidation rate in mitochondria of flight muscles of Bombus terrestris L. increased by a factor of 2.15 after flying for 1 h. An electrophoretically homogenous preparation of succinate dehydrogenase with a specific activity of 7.14 U/mg protein and 81.55-fold purity was isolated from B. terrestris flight muscles. It is shown that this enzyme is represented in the muscle tissue by only one isoform with R f = 0.24. The molecular weight of the native molecule and its subunits A and B was determined. The kinetic characteristics of succinate dehydrogenase (K m = 0.33 mM) and the optimal concentration of hydrogen ions (pH 7.8) were established, and the effect of salts on the enzyme activity was studied. The role of succinate as a respiratory substrate in stress and the structural and functional characteristics of the succinate dehydrogenase system in the flight muscles of insects are discussed.  相似文献   

6.
Single foliar sprays of the growth retardant daminozide (1.5–12 g/l) approximately halved the incidence of common scab, caused by soil-borne Streptomyces scabies, on potted potato plants in the glasshouse. Two analogues of daminozide (N-dimethylaminomaleamic and N-(dimethylamino)-methylsuccinamic acids) also decreased scab, but others were inactive. Of 22 other unrelated growth regulators and translocated chemicals tested as foliar sprays, only gibberellic acid (0.1 g/l) decreased scab incidence, but many of the tubers were distorted. Chlormequat chloride and chlorphonium chloride, as root treatments, were inactive. In other experiments with daminozide, scab incidence was decreased after application to soil. In tests with two plants per pot, spraying one of each pair decreased its rate of stem extension, but did not affect the other, indicating that little or no daminozide passed into the soil from the roots of the sprayed plant. The decrease in scab brought about by foliar sprays was not altered by varying their timing during the period before symptom development (1 to 5 wk after potting). In agar plate tests, daminozide was only weakly toxic to S. scabies. It is concluded that daminozide probably decreased scab by altering the physiology of the plants, so that scab symptoms did not develop.  相似文献   

7.
In Acanthamoeba castellanii mitochondria, the apparent affinity values of alternative oxidase for oxygen were much lower than those for cytochrome c oxidase. For unstimulated alternative oxidase, the KMox values were around 4-5 μM both in mitochondria oxidizing 1 mM external NADH or 10 mM succinate. For alternative oxidase fully stimulated by 1 mM GMP, the KKMox values were markedly different when compared to those in the absence of GMP and they varied when different respiratory substrates were oxidized (KMox was around 1.2 μM for succinate and around 11 μM for NADH). Thus, with succinate as a reducing substrate, the activation of alternative oxidase (with GMP) resulted in the oxidation of the ubiquinone pool, and a corresponding decrease in KMox. However, when external NADH was oxidized, the ubiquinone pool was further reduced (albeit slightly) with alternative oxidase activation, and the KMox increased dramatically. Thus, the apparent affinity of alternative oxidase for oxygen decreased when the ubiquinone reduction level increased either by changing the activator or the respiratory substrate availability.  相似文献   

8.
Studies of electron transport in dry and imbibed peanut embryos   总被引:11,自引:11,他引:0       下载免费PDF全文
The respiration of isolated peanut (Arachis hypogea) embryos has been studied with dry and wet embryos and mitochondria prepared after various times of imbibition. Dry seeds respire slowly, apparently via a respiratory chain which is deficient in cytochrome c. Cytochrome c-deficient mitochondria have been prepared from the embryos up to 16 hours following imbibition. These mitochondria can metabolize reduced nicotinamide adenine dinucleotide and succinate, without respiratory control by ADP, but they do phosphorylate. Added cytochrome c increases both respiration and phosphorylation of these embryonic mitochondria. When growth starts, mitochondria appear which are similar to those isolated from other mature plant tissues; they have respiratory control and can actively metabolize succinate, malate, and reduced nicotinamide adenine dinucleotide. These latter mitochondria contain a concentration of cytochrome c comparable to that found in mitochondria isolated from other mature plant tissues. It is suggested that the earliest type of mitochondria may be required to control respiration in the dry and the recently wetted embryo.  相似文献   

9.
Growth and succinate versus lactate production from glucose by Anaerobiospirillum succiniciproducens was regulated by the level of available carbon dioxide and culture pH. At pH 7.2, the generation time was almost doubled and extensive amounts of lactate were formed in comparison with growth at pH 6.2. The succinate yield and the yield of ATP per mole of glucose were significantly enhanced under excess-CO2-HCO3 growth conditions and suggest that there exists a threshold level of CO2 for enhanced succinate production in A. succiniciproducens. Glucose was metabolized via the Embden-Meyerhof-Parnas route, and phosphoenolpyruvate carboxykinase levels increased while lactate dehydrogenase and alcohol dehydrogenase levels decreased under excess-CO2-HCO3 growth conditions. Kinetic analysis of succinate and lactate formation in continuous culture indicated that the growth rate-linked production rate coefficient (K) cells was much higher for succinate (7.2 versus 1.0 g/g of cells per h) while the non-growth-rate-related formation rate coefficient (K′) was higher for lactate (1.1 versus 0.3 g/g of cells per h). The data indicate that A. succiniciproducens, unlike other succinate-producing anaerobes which also form propionate, can grow rapidly and form high final yields of succinate at pH 6.2 and with excess CO2-HCO3 as a consequence of regulating electron sink metabolism.  相似文献   

10.
Cations were generally ineffective in stimulating succinate transport in a succinate dehydrogenase mutant of Bacillus subtilis unless accompanied by polyvalent anions; phosphate and sulfate being particularly active. The Km values for the phosphate or sulfate requirement were approx. 3 mM.Biphasic kinetics were characteristic of both the succinate (Km values 0.1 and 1 mM), and inorganic phosphate (Km values 0.1 and 3 mM) transport system(s). The phosphate transport system(s) was repressed by high inorganic phosphate and a coordinate increase in the transport of phosphate, arsenate, and phosphate-stimulated succinate transport accompanied growth in low phosphate media.A class of arsenate resistant mutants were simultaneously defective in the transport of arsenate, phosphate and succinate when cells were repressed for phosphate transport, however, the transport of these ions was regained in these mutants when grown in low phosphate media. Organic phosphate esters did not stimulate succinate transport in arsenate resistant mutants but were effective after growth in low phosphate media. Growth under phosphate limitation permitted the simultaneous regain of both phosphate and sulfate dependent succinate transport activities whereas sulfate limitation alone was ineffective.Succinate was not transported by an anion exchange diffusion mechanism since phosphate efflux was low or absent during succinate transport.The transport of C4-dicarboxylates in B. subtilis is strongly stimulated by intracellular polyvalent anions. The absence of an anion permeability mechanism precludes succinate transport but partial escape from this restriction is mediated by the derepression of a phosphate transport system.  相似文献   

11.
The changes occurring in the respiratory enzymes of anaerobically grown Escherichia coli strain B and E. coli 15 TAUbar during exposure to oxygen were studied. Reduced nicotinamide adenine dinucleotide (NADH) oxidase activity reached its peak soon after O2 exposure; cytochrome content and succinate oxidase activity increased more slowly, and these increases paralleled each other. The activities of isocitrate and malate dehydrogenases also increased, but the increase was less than that of the succinate and NADH oxidases; exposure to O2 had no effect on the succinate and NADH dehydrogenase activities. On the other hand, the glycolytic activity decreased slowly after O2 exposure. The incorporation of 32P into acid-soluble organic phosphate esters paralleled the respiratory rate during the first 60 min after O2 exposure, but continued to increase after the respiration reached a plateau. The sensitivity of 32P incorporation to the uncoupler carbonyl cyanide m-chlorophenylhydrazone also increased with time. The observed relationship between the development of the respiratory chain and the energy-conserving mechanism during O2 exposure is discussed. Synthesis of the respiratory enzymes upon exposure to oxygen was dependent on concomitant protein and ribonucleic acid synthesis but not on deoxyribonucleic acid synthesis.  相似文献   

12.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

13.
Addition of nifurtimox (a nitrofuran derivative) to Trypanosoma cruzi culture (epimastigote) forms induced an increase in the respiratory rate and the release of H2O2 from the whole cells to the suspending medium. Growth-inhibiting concentrations of nifurtimox were able to stimulate O2? production by the T. cruzi mitochondrial fraction supplemented with NADH (or succinate), and also to enhance the generation of O2? by the microsomal fraction with NADPH as reductant.  相似文献   

14.
Ozone effects on lung mitochondrial oxidative metabolism were examined after short-term exposure of rats and monkeys to O3. Exposure of animals to 2 ppm O3 for 8 hr or to 4 ppm O3 for 4 hr caused a 15–27% (P < 0.05) depression of lung mitochondrial O2 consumption, using 2-oxoglutarate, succinate, and glycerol-1-phosphate. but not ascorbate plus Wurster's blue as substrates. Under these exposure conditions (4 ppm 4 hr) the ADP:O ratios dropped 25–36% (P < 0.05) and the respiratory control indices decreased 27–33% (P < 0.02) for oxidation of all substrates examined. Lung mitochondria from control animals were relatively impermeable to added NADH, but those from O3-exposed animals showed an increased permeability as judged from NADH oxidation at a rate 3-fold higher than the control. Likewise, added cytochrome c caused a 22% (P < 0.01) stimulation of succinate oxidation in exposed lung mitochondria as against 5% (nonsignificant) in controls. Ozone exposure also caused a 20% (P < 0.01) oxidation of thiol groups in lung mitochondria, but no lipid peroxidation products were detectable in O3-exposed lung tissue. The depression of substrate utilization, coupled phosphorylation and respiratory control observed in lung mitochondria of O3-exposed animals might be related to alteration of membrane permeability, and inhibition of respiratory enzymes (dehydrogenases) due to oxidation of functional thiol groups.  相似文献   

15.
The relationship between extracellular poly(3-hydroxybutyrate) (PHB) depolymerase synthesis and the unusual properties of a succinate uptake system was investigated in Pseudomonas lemoignei. Growth on and uptake of succinate were highly pH dependent, with optima at pH 5.6. Above pH 7, growth on and uptake of succinate were strongly reduced with concomitant derepression of PHB depolymerase synthesis. The specific succinate uptake rates were saturable by high concentrations of succinate, and maximal transport rates of 110 nmol/mg of cell protein per min were determined between pH 5.6 and 6.8. The apparent KS0.5 values increased with increasing pH from 0.2 mM succinate at pH 5.6 to more than 10 mM succinate at pH 7.6. The uptake of [14C]succinate was strongly inhibited by several monocarboxylates. Dicarboxylates also inhibited the uptake of succinate but only at pH values near the dissociation constant of the second carboxylate function (pKa2). We conclude that the succinate carrier is specific for the monocarboxylate forms of various carboxylic acids and is not able to utilize the dicarboxylic forms. The inability to take up succinate2− accounts for the carbon starvation of P. lemoignei observed during growth on succinate at pH values above 7. As a consequence the bacteria produce high levels of extracellular PHB depolymerase activity in an effort to escape carbon starvation by utilization of PHB hydrolysis products.  相似文献   

16.
Transport of succinate by Pseudomonas putida   总被引:9,自引:0,他引:9  
Induced succinate uptake and transport (defined as transport of a compound followed by its metabolism and transport in the absence of subsequent metabolism) by Pseudomonas putida are active processes resulting in intracellular succinate concentrations 10-fold that of the initial extracellular concentration. Uptake was studied with the wild-type strain P. putida P2 and transport with a mutant deficient in succinate dehydrogenase activity. Addition of succinate, fumarate, or malate to the growth medium induces both processes above a basal level. Induction is dependent on protein synthesis and subject to catabolite repression. When extracts of induced and noninduced wild-type cells were assayed for succinate dehydrogenase, fumarase, and malate dehydrogenase only malate dehydrogenase increased in specific activity. Transport is inhibited by iodoacetamide, KCN, NaN3, and 2,4-dinitrophenol and shows pH and temperature optima of 6.2 and 30 °C. Kinetic parameters are: basal uptake (cells grown on glutamate) Km 11.6 μm, v 0.32 nmoles per min per mg dry cell mass; induced uptake (cells grown on succinate plus NH4Cl) Km 12.5 μm, v 5.78 nmoles per min per mg dry cell mass; induced transport (cells grown on nutrient broth plus succinate) Km 10 μm, V 0.98 nmoles per min per mg dry cell mass. It was not possible to determine the kinetic parameters of basal transport. Malate and fumarate were the only compounds exhibiting competitive inhibition of uptake and transport suggesting common transport system for all three compounds. The Ki values for competitive inhibition and the Km for succinate indicate the order of affinity for both uptake and transport are succinate > malate > fumarate. Data from kinetic parameters of uptake and transport and studies on succinate metabolism provide evidence consistent with concurrent increases in transport and metabolism to account for induced succinate uptake by P. putida.  相似文献   

17.
Cytochrome bd is a terminal quinol oxidase in Escherichia coli. Mitochondrial respiration is inhibited at cytochrome bc1 (complex III) by myxothiazol. Mixing purified cytochrome bd oxidase with myxothiazol-inhibited bovine heart submitochondrial particles (SMP) restores up to 50% of the original rotenone-sensitive NADH oxidase and succinate oxidase activities in the absence of exogenous ubiquinone analogs. Complex III bypassed respiration and is saturated at amounts of added cytochrome bd similar to that of other natural respiratory components in SMP. The cytochrome bd tightly binds to the mitochondrial membrane and operates as an intrinsic component of the chimeric respiratory chain.  相似文献   

18.
Horn ME  Mertz D 《Plant physiology》1982,69(6):1439-1443
The respiration of dark-grown Nicotiana glutinosa L. cells in liquid suspension culture was found to be highly cyanide resistant and salicylhydroxamic acid (SHAM) sensitive, indicative of an active alternative respiratory pathway. This was especially true during the lag and logarithmic phases of the 14-day growth cycle. Mitochondria isolated from logarithmically growing cells exhibited active oxidation of malate, succinate, and exogenous NADH. Oxidation of all three substrates had an optimum pH of 6.5 and all were highly resistant to inhibited by cyanide and sensitive to SHAM. Respiratory control was exhibited by all three substrates but only if SHAM was present to block the alternative pathway and divert electrons to the phosphorylating cytochrome pathway. The cyanide-resistant oxidation of exogenous NADH has previously only been associated with Arum spadix mitochondria. Coemergence during evolution of the alternative respiratory pathway and the exogenous NADH dehydrogenase in plant mitochondria as a possible mechanism for removal of cytoplasmic NADH is proposed. Evidence is presented which suggests that mitochondrial assays should be performed at pH 6.5.  相似文献   

19.
Actinobacillus succinogenes 130Z naturally produces among the highest levels of succinate from a variety of inexpensive carbon substrates. A few studies have demonstrated that A. succinogenes can anaerobically metabolize glycerol, a waste product of biodiesel manufacture and an inexpensive feedstock, to produce high yields of succinate. However, all these studies were performed in the presence of yeast extract, which largely removes the redox constraints associated with fermenting glycerol, a highly reduced molecule. We demonstrated that A. succinogenes cannot ferment glycerol in minimal medium, but that it can metabolize glycerol by aerobic or anaerobic respiration. These results were expected based on the A. succinogenes genome, which encodes respiratory enzymes, but no pathway for 1,3-propanediol production. We investigated A. succinogenes’s glycerol metabolism in minimal medium in a variety of respiratory conditions by comparing growth, metabolite production, and in vitro activity of terminal oxidoreductases. Nitrate inhibited succinate production by inhibiting fumarate reductase expression. In contrast, growth in the presence of dimethylsulfoxide and in microaerobic conditions allowed high succinate yields. The highest succinate yield was 0.75 mol/mol glycerol (75 % of the maximum theoretical yield) in continuous microaerobic cultures. A. succinogenes could also grow and produce succinate on partially refined glycerols obtained directly from biodiesel manufacture. Finally, by expressing a heterologous 1,3-propanediol synthesis pathway in A. succinogenes, we provide the first proof of concept that A. succinogenes can be engineered to grow fermentatively on glycerol.  相似文献   

20.
The requirement of carbon dioxide for growth of Bacteroides amylophilus is quantitatively similar to that of certain other rumen bacteria. Carbon dioxide could be replaced by bicarbonate, but not by formate or certain amino acids. Label from 14CO2 was incorporated into the succinate produced during maltose fermentation by B. amylophilus, and during glucose fermentation by B. ruminicola, and during cellobiose fermentation by B. succinogenes. All of the incorporated label could be associated with the carboxyl function of the molecule. The depression in radioactivity per micromole of carbon in the succinate formed from the fermentation of uniformly labeled 14C-maltose by B. amylophilus was greater than would be expected if all of the succinate formed was produced via a direct CO2 fixation pathway(s) involving phosphoenolpyruvate or pyruvate; the radioactivity per micromole of carbon suggests that as much as 60% of the total succinate results from a pathway(s) involving direct CO2 fixation. Maltose fermentation by B. amylophilus was dependent upon CO2 concentration, but CO2 concentration could not be shown to influence either the fermentation end-product ratios or the proportion of total succinate formed attributable to CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号