首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the collagens synthesized by cultures of normal human corneal stromal cells. Radioactively labeled products, accumulated in the culture medium during a 24-h labeling period, were treated with pepsin and analyzed by SDS-polyacrylamide gel electrophoresis. The cell layer collagen was characterized by 2.6 M and 4.4 M salt fractionation at neutral pH. CM-cellulose column chromatography, SDS-gel electrophoresis, and cyanogen bromide peptide mapping. Type I alpha 1 and alpha 2 chains were the predominant components in both the cell layer and the medium fractions of normal human stromal cultures; type III collagen was found mostly in the culture medium; and type V collagen was associated with the cell layer. Immunofluorescent techniques used to visualize collagen deposition in the cell layer confirmed the presence of these collagen types. Keratoconus is a disease characterized by thinning and scarring of the central cornea. Stromal cells grown from keratoconus corneas produced similar types of collagen (types I, III, and V) as normal human controls. Cells from keratoconus patients, however, contained more type V collagen in the cell layer than did normal cells. The difference was seen only in the 4.4 M salt precipitates. Since type V collagen is one component of cell surfaces, the primary defect in cultures from keratoconus corneas could involve cell membrane and cell surface components.  相似文献   

2.
J M Burke  G Balian  R Ross  P Bornstein 《Biochemistry》1977,16(14):3243-3249
Analysis of pepsin-resistant proteins produced in culture by monkey aortic smooth muscle cells (SMC) indicates the synthesis of types I and III collagen. As determined by carboxymethylcellulose chromatography and disc gel electrophoresis, SMC cultures synthesize more type III collagen than monkey skin fibroblast cultures; aortic adventitial cell cultures (a mixture of SMC and fibroblasts) synthesize an intermediate amount of type III collagen. Both types I and III procollagens can also be isolated from the culture medium of SMC and skin fibroblasts. The procollagens were separated by diethylaminoethylcellulose (DEAE-cellulose) chromatography in identified by electrophoresis and after cleavage with pepsin and cyanogen bromide. Quantitation of the procollagen by DEAE-cellulose chromatography suggests that 68% of the SMC procollagens and less than 10% of the skin fibroblast procollagens are type III. On the other hand, estimation of the proportions of collagen types secreted by cells, employing pepsin digestion of cell culture medium at 15 degrees C, leads to an underestimation of the amount of type III collagen relative to type I. SMC and fibroblasts may differ in their ability to convert type I procollagen to collagen ad indicated by the observation that skin fibroblast culture medium contains both pN and pC collagen intermediates after 24 h, while cultures of SMC essentially lack the pC collagen intermediates.  相似文献   

3.
Ultrastructural and biochemical studies were carried out on bovine aortic smooth muscle cells cultured in the presence or absence of ascorbate. In its absence, electron microscopic examination of cultures revealed that the extracellular components consisted primarily of microfibrils. Morphologically identifiable collagen fibrils were only observed in the matrix upon ascorbate supplementation. Smooth muscle cells grown in ascorbate-free media synthesized large amounts of type VI collagen. The identity of the latter was confirmed by ion exchange chromatography, slab gel electrophoresis, and amino acid analysis. Addition of ascorbate resulted in a stimulation of type I collagen production, levels of the type III remained constant, and types V and VI were decreased. Since, in the absence of ascorbate, smooth muscle cells are known to synthesize predominantly elastin, the present data support the contention that the type VI collagen and the microfibrillar component of elastic tissue are either identical or similar.  相似文献   

4.
In contrast with smooth-muscle cells from the same tissue, endothelial cells from pig aorta were found to exhibit in culture considerable variability in the pattern of collagen synthesis between one isolation of cells and the next. Synthesis varied from largely collagen type I to virtually all type III in the absence of type I but with small amounts still of collagens types IV and V, to, in one instance, synthesis basically of only type V. Synthesis usually by these cells of collagen predominantly of the interstitial type (I and III) rather than, as might be expected, that from basement membrane (type IV) was not attributable to the influence of subculture. All four collagen types were deposited in the cell layer to an increased extent in primary compared with secondary cultures of either smooth muscle or endothelial origin. Endothelial cells appeared sometimes to synthesize a large-Mr collagenous entity that might conceivably be related to 'short-chain' collagen. In addition, small-Mr hydroxyproline-containing peptides were detected that might reflect rapid collagen(s) turnover in endothelial cultures.  相似文献   

5.
Types I, III and V collagens and proteoglycan were localized in the aorta by indirect immunofluorescence techniques. Type I collagen was more prominent in media and adventitia than in intima while type III collagen predominated in intima and media but appeared less significant in adventitia. Type V collagen was observed in intima and media only and was seen surrounding smooth muscle cells. Type I collagen was located between elastic fibres but type III collagen appeared to envelop the fibres, suggesting an interaction between elastic fibres and type III collagen. Pretreatment of sections with testicular hyaluronidase caused no changes in staining for type I collagen, but adventitial areas showed increased staining for type III collagen. After digestion with chondroitinase ABC, intimal and medial areas showed increased staining for type III collagen. Therefore, type III collagen forms stronger interactions with proteoglycans and hyaluronic acid than does type I collagen and type III collagen in adventitia is largely masked by hyaluronic acid, while type III collagen in intima and media is associated with proteoglycan. Thus, type III collagen is a more significant component of adventitia than previously recognized. Proteoglycan was also partly localized along elastic fibres. It is, therefore, suggested that elastic fibres are coated with type III collagen, which itself is coated with proteoglycan.  相似文献   

6.
Collagen types I, III, and V in human embryonic and fetal skin   总被引:3,自引:0,他引:3  
The dermis of human skin develops embryonically from lateral plate mesoderm and is established in an adult-like pattern by the end of the first trimester of gestation. In this study the structure, biochemistry, and immunocytochemistry of collagenous matrix in embryonic and fetal dermis during the period of 5 to 26 weeks of gestation was investigated. The dermis at five weeks contains fine, individual collagen fibrils draped over the surfaces of mesenchymal cells. With increasing age, collagen matrix increases in abundance in the extracellular space. The size of fibril diameters increases, and greater numbers of fibrils associate into fiber bundles. By 15 weeks, papillary and reticular regions are recognized. Larger-diameter fibrils, larger fibers, denser accumulations of collagen, and fewer cells distinguish the deeper reticular region from the finer, more cellular papillary region located beneath the epidermis. The distribution of collagen types I, III, and V were studied at the light microscope level by immunoperoxidase staining and at the ultrastructural level by transmission (TEM) and scanning electron microscopy (SEM) with immunogold labeling. By immunoperoxidase, types I and III were found to be evenly distributed, regardless of fetal age, throughout the dermal and subdermal connective tissue with an intensification of staining at the dermal-epidermal junction (DEJ). Staining for types III and V collagen was concentrated around blood vessels. Type V collagen was also localized in basal and periderm cells of the epidermis. By immuno-SEM, types I and III were found associated with collagen fibrils, and type V was localized to dermal cell surfaces and to a more limited extent with fibrils. The results of biochemical analyses for relative amounts of types I, III, and V collagen in fetal skin extracts were consistent with immunoperoxidase data. Type I collagen was 70-75%, type III collagen was 18-21%, and type V was 6-8% of the total of these collagens at all gestational ages tested, compared to 85-90% type I, 8-11% type III, and 2-4% type V in adult skin. The enrichment of both types III and V collagen in fetal skin may reflect in part the proportion of vessel- and nerve-associated collagen versus dermal fibrillar collagen. The accumulation of dermal fibrillar collagen with increasing age would enhance the estimated proportion of type I collagen, even though the ratios of type III to I in dermal collagen fibrils may be similar at all ages.  相似文献   

7.
Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cells at Hamburger-Hamilton stages 20--30 but not in the stroma at any age. Intact corneas from embryos older than stage 30 contain and synthesize type I collagen but no detectable type III collagen. However, whole stromata subjected to collagenase treatment and scraping (to remove epithelium and endothelium) and stromal fibroblasts from such corneas inoculated in vitro begin synthesis of type III collagen within a few hours while continuing to synthesize type I collagen. As demonstrated by double-antibody staining, most corneal fibroblasts contain collagen types I and III simultaneously. Collagen type III was identified biochemically in cell layers and media after chromatography on carboxymethylcellulose be detection of disulfide-linked alpha l (III)3 by SDS gel electrophoresis. The conditions under which the corneal fibroblasts gain the ability to synthesize type III collagen are the same as those under which they lose the ability to synthesize the specific proteoglycan of the cornea: the presence of corneal-type keratan sulfate.  相似文献   

8.
Analyses were made of the minor collagens synthesized by cultures of chondrocytes derived from 14-day chick embryo sterna. Comparisons were made between control cultures, cultures grown for 9 days in 5-bromo-2'-deoxyuridine (BrdU) and clones of chondrocytes grown to senescence. Separation of minor collagens from interstitial collagens was achieved by differential salt precipitation in the presence of carrier collagens in acid conditions. The precipitate at 0.9 M NaCl 0.5 M acetic acid from control cultures was shown by CNBr peptide analysis to contain only the alpha 1(II) chain of type II collagen, whereas after BrdU treatment or growth to senescence synthesis of only alpha 1(I) and alpha 2(I) chains occurred. The synthesis of type III collagen was not detected. Analysis of the precipitate at 2.0 M NaCl, 0.5 M HAc from control cultures demonstrated the synthesis of 1 alpha, 2 alpha and 3 alpha chains together with the synthesis of short chain (SC) collagen of Mr 43000 after pepsin digestion. After BrdU treatment or growth to senescence alpha chains were isolated which possessed the migration positions on polyacrylamide gel electrophoresis (PAGE), or the elution positions on CM-cellulose chromatography, of the alpha 1(V) and alpha 2(V) chains of type V collagen. In addition, for BrdU-treated but not for control cultures, intracellular immunofluorescent staining was observed with a monoclonal antibody which specifically recognizes an epitope present in the triple helix of type V collagen. Synthesis of short chain (SC) collagen was not detected after BrdU treatment or growth to senescence. These results suggest that chick chondrocytes grown in conditions known to cause switching of collagen synthesis from type II to type I collagen also undergo a switch from the synthesis of 1 alpha, 2 alpha and 3 alpha chains to the synthesis of the alpha 1(V) and alpha 2(V) chains of type V collagen. It appears that there are several cartilage-specific collagens which together undergo a regulatory control to the synthesis of collagens typical of other connective tissues.  相似文献   

9.
K Elima  E Vuorio 《FEBS letters》1989,258(2):195-198
Cell cultures were initiated from epiphyseal cartilages, diaphyseal periosteum, and muscle of 16-week human fetuses. Total RNAs isolated from these cultures were analyzed for the levels of mRNAs for major fibrillar collagens, two proteoglycan core proteins and osteonectin. In standard monolayer cultures the differentiated chondrocyte phenotype was replaced by a dedifferentiated one: the mRNA levels of cartilage-specific type II collagen decreased upon subculturing, while those of types I and III collagen, and the core proteins increased. When the cells were transferred to grow in agarose, redifferentiation (reappearance of type II collagen mRNA) occurred. Fibroblasts grown from periosteum and muscle were found to contain mRNAs for types I and III collagen and proteoglycan cores. When these cells were transferred to agarose they acquired a shape indistinguishable from chondrocytes, but no type II collagen mRNA was observed.  相似文献   

10.
Collagen synthesis was monitored in cultures of rabbit arterial smooth muscle cells (SMC). Both the rate of collagen synthesis per cell and collagen synthesis as a percent of total protein synthesis were measured at specific intervals from 1 to 14 days after inoculation of smooth muscle cells. The proportions of types I and III collagen present in the conditioned incubation medium and in the cell layer were also examined. After inoculation the cells displayed population expansion typical of SMC in which growth slowed but did not cease after the cells attained confluence. Collagen synthesis rates, expressed as [14C]hydroxyproline per cell, were eight-fold higher in preconfluent cells. In these cultures collagen accounted for more than 20% of the newly synthesized, 14C-labeled protein present as trichloroacetic acid (TCA)-insoluble material in 24 h culture media. In post-confluent cultures, this percentage was reduced to about 7% of the total protein synthesized. Synthesis rates of both collagen and non-collagen protein decreased with increasing time after inoculation. However, the rate of decline of collagen synthesis was three times greater than that seen for non-collagen protein. Early cultures synthesized relatively more type I than type III procollagen. The type I to type III ratio was highest at day 3 and declined after that time to day 14. While the synthesis of both types decreased with increasing age, type I declined at a greater rate resulting in a predominance of type III procollagen secretion by older cultures. We conclude that protein synthesis in general and collagen synthesis in particular are quantitatively and qualitatively dependent upon the growth stage of SMC in vitro.  相似文献   

11.
The purpose of this study is to examine the intracellular distribution of collagen types I, III and V in tenocytes using triple-label immunofluorescence staining technique in high-density tenocyte culture on Filter Well Inserts (FWI). The tenocytes were incubated for 4 weeks under monolayer conditions and for 3 weeks on FWI. At the end of the third week of high-density culture, we observed tenocyte aggregation followed by macromass cluster formation. Immunofluorescence labeling with anti-collagen type I antibody revealed that the presence of collagen type I was mostly around the nucleus. Type III collagen was more diffused in the cytoplasm. Type V collagen was detected in fibrillar and vesicular forms in the cytoplasm. We conclude that, the high-density culture on FWI is an appropriate method for the production of tenocytes without loosing specialized processes such as the synthesis of different collagen molecules. We consider that the high-density culture system is suitable for in vitro applications which affect tendon biology and will improve our understanding of the biological behavior of tenocytes in view of adequate matrix structure synthesis. Such high-density cultures may serve as a model system to provide sufficient quantities of tenocytes to prepare tenocyte-polymer constructs for tissue engineering applications in tendon repair.  相似文献   

12.
When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly.  相似文献   

13.
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.  相似文献   

14.
In five lines of mouse embryonal carcinoma cells, PCC3/A1, PCC4, PCC4/Aza-R1, and F9, collagen synthesis was examined by immunofluorescence reaction using specific antibodies directed against collagen. All the embryonal carcinoma cell lines showed type IV collagen, and PCC7-S/Aza-R1 revealed the additional presence of type III collagen. When the F9 and PCC3/A1 EC cells were treated with retinoic acid and dibutyryl-cAMP, they differentiated into morphologically different cellular types. These cellular types showed new types of collagen. Thus, in treated F9 cells, type I, type III, and type V collagen were detected and in treated PCC3/A1 cells, type III and type V collagen were detected. In two established cellular strains, PYS-2 corresponding to parietal endoderm and 3TDM-1 corresponding to trophoblastoma, collagen was identified by immunological reaction and electrophoretic mobility. The trophoblastoma cell line was characterized by the production of type I, type III, and type IV collagen, whereas endodermal PYS-2 revealed type IV collagen.  相似文献   

15.
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell-layer associated pepsin-resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils.  相似文献   

16.
The distribution of type I, II, III, IV, V and VI collagens in 20 cases of osteosarcoma was demonstrated immunohistochemically using monospecific antibodies to different collagen types. In addition, biochemical analysis was made on collagenous proteins synthesized by tumor cells in short-term cultures obtained from seven representative cases and compared with dermal fibroblasts. In osteoblastic areas, most of the tumor osteoid consisted exclusively of type I collagen. Type V collagen was associated in some of them. Type III and type VI collagens were mainly localized in the perivascular fibrous stroma. Cultured tumor cells from osteoblastic osteosarcomas produced type I collagen exclusively and small amount of type V collagen constantly, while the synthetic activity of type III collagen was extremely low. In contrast, fibroblastic areas were characterized by the codistribution of type I, III, VI collagens and chondroblastic areas by type I, V, VI collagens as well as type II. Furthermore, type IV collagen was demonstrated in the stroma, other than the basement membrane region of blood vessels, in fibroblastic, intramedullary well-differentiated and telangiectatic osteosarcomas. In vitro, the production of variable amounts of type IV collagen, which was not detected in cultured dermal fibroblasts, was also recognized in the osteoblastic, fibroblastic, undifferentiated and intramedullary well-differentiated osteosarcomas examined. These findings suggest that the immunohistochemical approach using monospecific antibodies to different collagen types is useful not only in identifying some specific organoid components, such as tumor osteoid, but also in disclosing the biological properties of osteosarcoma cells with diverse differentiation.  相似文献   

17.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

18.
In the present study we investigated whether the collagen types I, III and V affect the activity of fibroblasts obtained from rabbit periosteum. The cells were cultured on plates either or not coated with different amounts of collagen type I, III or V and analyzed for their attachment, DNA synthesis and the expression and activity of matrix metalloproteinases (MMPs). Our data show that the three collagen types promoted attachment and spreading of the cells and stimulated DNA synthesis when used in relatively low concentrations. High concentrations of type V-but not of type I or III-proved to inhibit thymidine incorporation. The expression and activity of matrix metalloproteinase 1 (MMP-1; interstitial collagenase) decreased under the influence of relatively low amounts of collagen (<40 microg/well), whereas higher levels increased its release. Matrix metalloproteinase 2 (MMP-2; gelatinase A) was up-regulated by the different types of collagen; the active fraction of stromelysin-1 (MMP-3) decreased. Accordingly, the mRNA expression of MMP-1 and -3 were reduced. The expression of MMP-2 mRNA, however, proved to be unaffected. Blocking antibodies to beta(1)-integrin or echistatin increased the level of MMP-1 but had no effect on MMP-2. All parameters tested were similarly affected by type I and III collagen, whereas the effect of type V was always less. We conclude that the collagen types I, III and V provide different sets of signals for fibroblasts that differently modulate their proliferation and MMP expression.  相似文献   

19.
A method to determine the proportions of the major fiber-forming collagens (types I, III, and V) in noncartilaginous human tissues is presented. The procedure relies on direct solubilization of tissue collagen as cyanogen bromide peptides. The peptides are subjected to cation exchange chromatography followed by gel permeation chromatography in a manner consistent with the rapid resolution and quantitation of relatively low-molecular-weight marker peptides for each collagen. The marker peptides utilized for type I, III, and V collagens are alpha 1 (I)-CB2, alpha 1 (III)-CB2, and alpha 1 (V)-CB1, respectively. Quantitation of the peptides is attained as a function of ultraviolet absorbance during gel permeation chromatography. The nature of the marker peptides, the use of high-performance liquid chromatography techniques, and quantitation of the peptides by ultraviolet absorbance renders the method suitably rapid, sensitive, and accurate for routine evaluations of collagen composition. The utility of the method is illustrated in the presentation of analyses on specimens of placental membranes and blood vessel walls.  相似文献   

20.
Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号