首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

2.
Surfactant-Enhanced Biodegradation of a PAH in Soil Slurry Reactors   总被引:2,自引:0,他引:2  
This study focuses on finding operational regimes for surfactant-enhanced biodegradation. Biodegradation of phenanthrene as a model poly cyclic aromatic hydrocarbon (PAH) was studied in soil slurry reactors in the presence and absence of a Triton N-101 surfactant solution. Results showed that the presence of surfactant slowed the initial biodegradation rate of phenanthrene, but increased the total mass of phenanthrene degraded over a four day period by 30%. A mathematical model was developed which simulates the biodegradation of low solubility hydrocarbons in the presence of soils and surfactants by accounting for the hydrocarbon bioavailability in different phases of the system. The model was able to simulate the experimental results using parameters and rate coefficients that were obtained through independent experiments.

The model was used to investigate the effect of different operating conditions on the overall biodegradation of phenanthrene. Simulation results showed that there is a system-specific optimum surfactant concentration range, beyond which bioremediation is hindered. The results also indicate that for a given system, the optimal surfactant concentration can be determined from simple sorption and solubility equilibrium experiments. Finally, a metric is presented for determining the potential effectiveness of surfactant-enhanced bioremediation based on the Monod and bioavailability parameters for a given system.  相似文献   

3.
Li JL  Bai R 《Biodegradation》2005,16(1):57-65
Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.  相似文献   

4.
Surfactants are known to increase the apparent aqueous solubility of polycyclic aromatic hydrocarbons and may thereby enhance their bioavailability. In this study the effects of four surfactants on the mineralization of phenanthrene by Pseudomonas aeruginosa in liquid culture and in soil-water suspensions was studied in batch reactors over a 15-week study period. In the absence of surfactant, liquid cultures mineralized approximately 50% of the phenanthrene added within seven weeks following a one-week lag period and an initial mineralization rate of 0.04 mg/d. Mineralization in soil-water suspensions proceeded without any measurable lag period. The initial mineralization rate was lower (0.006 mg/d), but mineralization continued to >70% over the fifteen week period. In general, the addition of very low concentrations of surfactant (0.001%) to liquid cultures did not impact mineralization significantly. At higher surfactant concentrations (CMC) all surfactants were seen to be inhibitory. In soil-water systems, the rate of phenanthrene mineralization was decreased even at surfactant doses that did not produce significant solubilization. In summary, none of the surfactants enhanced the mineralization of phenanthrene by P. aeruginosa in liquid culture or in soil-water suspensions. In order to rank surfactant toxicity, microbial toxicity tests were performed measuring the light output of bioluminescent bacteria as affected by the presence of surfactants. Additional toxicity testing indicated that the presence of solubilized phenanthrene increased the toxicity of the surfactant by a 100-fold suggesting that the toxicity of solubilized substrate needs also to be considered in the application of surfactant-amended remediation.  相似文献   

5.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

6.
7.
The biodegradation of phenanthrene by the marine strain Sphingomonas sp. 2MPII (DSMZ 11572) was enhanced by the solubilizating properties of the nonionic surfactant Tween 80. After 197 h of incubation, 85 +/- 4% of the initial amount of phenanthrene (0.4 g l-1) was biodegraded in presence of Tween 80 (0.5 g l-1) as opposed to 52 +/- 5% without this synthetic surfactant. These results confirm that the activity of the strain 2MPII is limited by the bioavailability of the polycyclic aromatic hydrocarbon (PAH) substrate in the aqueous phase. Tween 80 appears to be efficient in increasing the bioavailability of hydrophobic compounds such as PAHs.  相似文献   

8.
The presence of the synthetic nonionic surfactants Triton X-100, Tergitol NPX, Brij 35, and Igepal CA-720 resulted not only in increased apparent solubilities but also in increased maximal rates of dissolution of crystalline naphthalene and phenanthrene. A model based on the assumption that surfactant micelles are formed and act as a separate phase underestimated the dissolution rates; this led to the conclusion that surfactants present at concentrations higher than the critical micelle concentration affect the dissolution process. This conclusion was confirmed by the results of batch growth experiments, which showed that the rates of biodegradation of naphthalene and phenanthrene in the dissolution-limited growth phase were increased by the addition of surfactant, indicating that the dissolution rates were higher than the rates in the absence of surfactant. In activity and growth experiments, no toxic effects of the surfactants at concentrations up to 10 g liter(sup-1) were observed. Substrate present in the micellar phase was shown to be not readily available for degradation by the microorganisms. This finding has important consequences for the application of (bio)surfactants in biological soil remediation.  相似文献   

9.
Surfactants are known to increase the apparent aqueous solubility of polycyclic aromatic hydrocarbons (PAHs) and may thus be used to enhance the bioavailability and thereby to stimulate the biodegradation of these hydrophobic compounds. However, surfactants may in some cases reduce or inhibit biodegradation because of toxicity to the bacteria. In this study, toxicity of surfactants on Sphingomonas paucimobilis strain EPA505 and the effect on fluoranthene mineralization were investigated using Triton X-100 as model surfactant. The data showed that amendment with 0.48 mM (0.3 g l-1) of Triton X-100 completely inhibited fluoranthene and glucose mineralization and reduced cell culturability by 100% in 24 h. Electron micrographs indicate that Triton X-100 adversely affects the functioning of the cytoplasmic membrane. However, in the presence of 4.13 mM Ca2+-ions, Triton X-100 more than doubled the maximum fluoranthene mineralization rate and cell culturability was reduced by only 10%. In liquid cultures divalent ions, Ca2+ in particular and Mg2+ to a lesser extent, were thus shown to be essential for the surfactant-enhanced biodegradation of fluoranthene. Most likely the Ca2+-ions stabilized the cell membrane, making the cell less sensitive to Triton X-100. This is the first report on a specific factor which is important for successful surfactant-enhanced biodegradation of PAHs.  相似文献   

10.
The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4, 4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueous solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.  相似文献   

11.
Biological treatment of polycyclic aromatic hydrocarbons (PAH) has been demonstrated to be a feasible and common remediation technology which has been successfully applied to the clean-up of contaminated soils. Because bioavailability of the contaminants is of great importance for a successful bioremediation, a chemical pre-oxidation step by ozone was tested to enhance the subsequent biodegradation steps. Oxidation of PAH by ozone should result in reaction products that have a better solubility in water and thus a better bioavailability. A major part of this work was done by examinations of the model substance phenanthrene as a typical compound of PAH. After initial ozonation of phenanthrene, analysis by GC-MS showed at least seven identified conversion-products of phenanthrene. In comparison with phenanthrene these conversion products were more efficiently biodegraded by Sphingomonas yanoikuyae or mixed cultures when the ozonation process resulted in monoaromatic compounds. Primary ozonation products with biphenylic structures were found not to be biodegradable. Investigations into the toxicity of contaminated and ozonated soils were carried out by well-established toxicity assays using Bacillus subtilis and garden cress. The ozonated soils surprisingly showed higher toxic or inhibitory effects towards different organisms than the phenanthrene or PAH itself. The microbial degradation of phenanthrene in slurry reactors by S. yanoikuyae was not enhanced significantly by preozonation of the contaminated soil.  相似文献   

12.
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的强疏水性是阻止其在土壤和水环境中微生物降解的主要因素.表面活性剂由于能够提高PAHs的表观溶解度而在PAHs的微生物降解中得到了广泛研究.截至目前,有关化学或生物表面活性剂促进PAHs的微生物降解已有大量报道,然而也有学者发现了表面...  相似文献   

13.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

14.
The developed biosensor models were based on the use of immobilized Pseudomonas and Achromobacter cells for polycyclic aromatic hydrocarbons and surfactants detection. The responses of biosensors based on bacteria-degraders of anionic surfactants for organic substrates, which related to different classes of surfactants, aromatic and policyclic aromatic hydrocarbons (PAH) were investigated. The sensor showed the highest sensitivity to anionic surfactants and PAH. The lower limit of sodium dodecyl sulfate detection is within a range of 0.25-0.5 mg/l (0.86-1.73 microM). The sensors showed the highest sensitivity to naphthalene (1-6 mM) and anthracene, fluorene, phenanthrene. All strains that have been investigated may be used as a receptor element of biosensors for detection of PAH and surfactants.  相似文献   

15.
The majority of polycyclic aromatic hydrocarbons (PAHs) sorb strongly to soil organic matter posing a complex barrier to biodegradation. Biosurfactants can increase soil-sorbed PAHs desorption, solubilisation, and dissolution into the aqueous phase, which increases the bioavailability of PAHs for microbial metabolism. In this study, biosurfactants, carbon sources, and metabolic pathway inducers were tested as stimulators of microorganism degradation. Phenanthrene served as a model PAH and Pseudomonas putida ATCC 17484 was used as the phenanthrene degrading microorganism for the liquid solutions and soil used in this investigation. Bench-scale trials demonstrated that the addition of rhamnolipid biosurfactant increases the apparent aqueous solubility of phenanthrene, and overall degradation by at least 20% when combined with salicylate or glucose in liquid solution, when compared to solutions that contained salicylate or glucose with no biosurfactant. However, salicylate addition, with no biosurfactant addition, increased the total degradation of phenanthrene 30% more than liquid systems with only biosurfactant addition. In soil slurries, small amounts of biosurfactant (0.25 g/L) showed a significant increase in total removal when only biosurfactant was added. In soil slurries containing salicylate, the effects of biosurfactant additions were negligible as there was greater than 90% removal, regardless of the biosurfactant concentration. The results of experiments performed in this study provide further evidence that an in situ enhancement strategy for phenanthrene degradation could focus on providing additional carbon substrates to induce metabolic pathway catabolic enzyme production, if degradation pathway intermediates are known.  相似文献   

16.
The biodegradation of phenanthrene by the biosurfactant-producing strain Pseudomonas aeruginosa 19SJ was investigated in experiments with the compound present either as crystals or dissolved in non-aqueous phase liquids (NAPLs). Growth on solid phenanthrene exhibited an initial phase not limited by dissolution rate and a subsequent, carbon-limited phase caused by exhaustion of the carbon source. Rhamnolipid biosurfactants were produced from solid phenanthrene and appeared in solution and particulate material (cells and phenanthrene crystals). During the carbon-limited phase, the concentration of rhamnolipids detected in culture exceeded the critical micelle concentration (CMC) determined with purified rhamnolipids. The biosurfactants caused a significant increase in dissolution rate and pseudosolubility of phenanthrene, but only at concentrations above the CMC. Externally added rhamnolipids at a concentration higher than the CMC increased the biodegradation rate of solid phenanthrene. Mineralization curves of low concentrations of phenanthrene initially dissolved in two NAPLs [2,2,4,4,6,8,8-heptamethylnonane and di(2-ethylhexyl)phthalate] were S-shaped, although no growth was observed in the population of suspended bacteria. Biosurfactants were not detected in solution under these conditions. The observed mineralization was attributed not only to suspended bacteria, but also to bacterial populations growing at the NAPL–water interface, mineralizing the compound at higher rates than predicted by abiotic partitioning. We suggest that rhamnolipid production and attachment increased the bioavailability of phenanthrene, so promoting biodegradation activity.  相似文献   

17.
Schwartz E  Scow KM 《Biodegradation》2001,12(3):201-207
Phenanthrene, a polycyclic aromatic hydrocarbon, becomes increasingly unavailable to microorganisms for degradation as it ages in soil. Consequently, many bioaugmentation efforts to remediate polycyclic aromatic hydrocarbons in soil have failed. We studied theeffect of repeatedly inoculating a soil with a phenanthrene-degrading Arthrobacter sp. on the mineralization kinetics of low concentrations of phenanthrene. After the first inoculation, the initial mineralization rate of 50 ng/g phenanthrene declined in a biphasicexponential pattern. By three hundred hours after inoculation, there was no difference in mineralization rates between the inoculated and uninoculated treatments even though a large fraction of the phenanthrene had not yet been mineralized. A second and third inoculation significantly increased the mineralization rate, suggesting that, though themineralization rate declined, phenanthrene remained bioavailable. Restirring the soil, without inoculation, did not produce similar increases in mineralization rates, suggesting absence of contact between cells and phenanthrene on a larger spatial scale (>mm) is not the cause of the mineralization decline. Bacteria inoculated into soil 280 hours beforethe phenanthrene was added could not maintain phenanthrene degradation activity. We suggest sorption lowered bioavailability of phenanthrene below an induction threshold concentration for metabolic activity of phenanthrene-degrading bacteria.  相似文献   

18.
The influence of hydrodynamic conditions on the dissolution rate of crystalline naphthalene as a model polycyclic aromatic hydrocarbon (PAH) was studied in stirred batch reactors with varying impeller speeds. Mass transfer from naphthalene melts of different surface areas to the aqueous phase was measured and results were modeled according to the film theory. Results were generalized using dimensionless numbers (Reynolds, Schmidt, and Sherwood). In combined mass transfer and biodegradation experiments, the effect of hydrodynamic conditions on the degradation rate of naphthalene by Pseudomonas 8909N was studied. Experimental results were mathematically described using mass-transfer and microbiological models. The experiments allowed determination of mass-transfer and microbiological parameters separately in a single run. The biomass formation rate under mass transfer limited conditions, which is related to the naphthalene biodegradation rate, was correlated to the dimensionless Reynolds number, indicating increased bioavailability at increased mixing in the reactor liquid. The methodology presented in which mass transfer processes are quantified under sterile conditions followed by a biodegradation experiment can also be adapted to more complex and realistic systems, such as particulate, suspended PAH solids or soils with intrapartically sorbed contaminants when the appropriate mass-transfer equations are incorporated.  相似文献   

19.
Phenanthrene Biodegradation in Freshwater Environments   总被引:1,自引:8,他引:1       下载免费PDF全文
Phenanthrene, a low-molecular-weight polycyclic aromatic hydrocarbon, was incubated with water samples from various reservoir systems in Tennessee to evaluate the potential for significant polycyclic aromatic hydrocarbon degradation by the indigenous microbial populations. Biodegradation was assessed by comparison of total polycyclic aromatic hydrocarbon substrate recovery in degradation flasks relative to sterile control flasks. During 1977 field studies, the mean phenanthrene biodegradation was approximately 80% after a 4-week incubation. Within a given habitat, 45% of the total variability in phenanthrene biodegradation was attributable to the physical, chemical, and microbiological site characteristics examined. Polycyclic aromatic hydrocarbon degradation was directly related to the historical environmental pollution of the sampling sites examined, the length of biodegradation assessment, temperature, and the molecular size of the polycyclic aromatic hydrocarbon substrate.  相似文献   

20.
Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and HALOMONAS: This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号